Skip to main content
Log in

Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Cytochrome P450 monooxygenases (P450s) are ubiquitous heme-thiolate proteins that have potential biotechnological application. Thermostable-P450s that can withstand hostile industrial conditions, such as high temperatures, extremes of pH and organic solvents, are needed for biotechnological usage. Here, for the first time, we report a large number of thermostable-P450s from two thermophilic biomass-degrading fungi, Myceliophthora thermophila and Thielavia terrestris. Genome-wide P450 analysis revealed the presence of 79 and 70 P450s (P450ome) in T. terrestris and M. thermophila. Authentic P450s containing both the P450 signature domains (EXXR and CXG) were classified as follows: T. terrestris (50 families and 56 subfamilies) and M. thermophila (49 families and 53 subfamilies). Bioinformatics analysis of P450omes suggested the presence of a large number of thermostable-P450s. Based on aliphatic index cut-off (>90), 14 and 11 P450s were determined to be thermostable in T. terrestris and M. thermophila. Among the thermostable P450s, six P450s from T. terrestris and three from M. thermophila had a melting temperature (Tm) of >65 °C, suggesting their hyperthermal tolerance. Analysis of the instability index of two ascomycete P450omes revealed the presence of 12 and 19 in vitro stable P450s in T. terrestris and M. thermophila. Overall, six P450s from T. terrestris and four from M. thermophila showed both thermal tolerance and in vitro stability. Thermophilic ascomycetes P450s are of potential interest from a structural, mechanistic and biotechnological point of view, as five P450s showed higher thermal tolerance and five showed higher in vitro stability compared to the well-characterized thermostable-P450s CYP175A1 (bacteria) and CYP119 (archaea).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC et al (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–927

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  PubMed  Google Scholar 

  • Blasco F, Kauffmann I, Schmid RD (2004) CYP175A1 from Thermus thermophilus HB27, the first β-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol 64:671–674

    Article  CAS  PubMed  Google Scholar 

  • Brodhun F, Göbel C, Hornung E, Feussner I (2009) Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a cytochrome P450. J Biol Chem 284:11792–11805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y et al (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3:913

    Article  PubMed Central  PubMed  Google Scholar 

  • Faber BW, van Gorcom RF, Duine JA (2001) Purification and characterization of benzo para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Arch Biochem Biophys 394:245–254

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA et al (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grogan G (2011) Cytochrome P450: exploiting diversity and enabling application as biocatalysts. Curr Opin Chem Biol 15:241–248

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (2002) Cytochrome P450 enzymes in the generation of commercial products. Nat Rev Drug Discov 1:359–366

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8:E101–E111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  CAS  PubMed  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg M (2004) Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci 25:193–200

    Article  CAS  PubMed  Google Scholar 

  • Isin EM, Guengerich FP (2007) Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta 1770:314–329

    Article  CAS  PubMed  Google Scholar 

  • Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Parks LW, Kelly DE (1995) Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol Δ22-desaturase. FEBS Lett 377:217–220

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123

    Article  CAS  PubMed  Google Scholar 

  • Koo LS, Tschirret-Guth RA, Straub WE, Moënne-Loccoz P, Loehr TM, Ortiz de Montellano PR (2000) The active site of the thermophilic CYP119 from Sulfolobus solfataricus. J Biol Chem 275:14112–14123

    Article  CAS  PubMed  Google Scholar 

  • Koo LS, Immoos CE, Cohen MS, Farmer PJ, Ortiz de Montellano PR (2002) Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J Am Chem Soc 124:5684–5691

    Google Scholar 

  • Ku T, Lu P, Chan C, Wang T, Lai S, Lyu P, Hsiao N (2009) Predicting melting temperature directly from protein sequences. Comput Biol Chem 33:445–450

    Article  CAS  PubMed  Google Scholar 

  • Lepesheva GI, Waterman MR (2004) CYP51—the omnipotent P450. Mol Cell Endocrinol 215:165–170

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 25:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Maloney AP, VanEtten HD (1994) A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol Gen Genet 243:506–514

    Article  CAS  PubMed  Google Scholar 

  • McCorkindale NJ, Hayes D, Johnston GA, Clutterbuck AJ (1983) N-acetyl-6-hydroxytryptophan—a natural substrate of monophenoloxidase from Aspergillus nidulans. Phytochemistry 22:1026–1028

    Article  CAS  Google Scholar 

  • McLean MA, Maves SA, Weiss KE, Krepich S, Sligar SG (1998) Characterization of a cytochrome P450 from the acidothermophilic archaea Sulfolobus solfataricus. Biochem Biophys Res Commun 252:166–172

    Article  CAS  PubMed  Google Scholar 

  • Melo NR, Moran GP, Warrilow AG, Dudley E, Smith SN, Sullivan DJ, Lamb DC, Kelly DE, Coleman DC, Kelly SL (2008) CYP56 (Dit2p) in Candida albicans: characterization and investigation of its role in growth and antifungal drug susceptibility. Antimicrob Agents Chemother 52:3718–3724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee YH, Kang S (2012) Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13:525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporium. J Biochem 119:435–440

    Article  CAS  PubMed  Google Scholar 

  • Nazir KHMNH, Ichinose H, Wariishi H (2010) Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae. Arch Microbiol 192:395–408

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nelson DR (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson DR (2011) Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta 1814:14–18

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (2013) A world of cytochrome P450s. Philos Trans R Soc B Biol Sci. doi:10.1098/rstb.2012.0430

    Google Scholar 

  • Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  • Nishida CR, Ortiz de Montellano PR (2005) Thermophilic cytochrome P450 enzymes. Biochem Biophys Res Commun 338:437–445

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly E, Köhler V, Flitsch SL, Turner NJ (2011) Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 47:2490–2501

    Article  Google Scholar 

  • Ortiz de Montellano PR, Nelson SD (2011) Rearrangement reactions catalyzed by cytochrome P450s. Arch Biochem Biophys 507:95–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SY, Yamane K, Adachi S, Shiro Y, Weiss KE, Maves SA, Sligar SG (2002) Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional properties. J Inorg Biochem 91:491–501

    Article  CAS  PubMed  Google Scholar 

  • Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio/Technology NY 10:894–898

    Article  CAS  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  CAS  PubMed  Google Scholar 

  • Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci USA 98:5838–5843

    Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schula F, Leca F, Hollmann F, Reetz MT (2005) Towards practical Baeyer-Villiger-Monooxygenases: applying a thermostable enzyme in the gram-scale synthesis of optically active lactones in a two-liquid-phase system. Beilstein J Org Chem 1:10

    Article  Google Scholar 

  • Shyadehi AZ, Lamb DC, Kelly SL, Kelly DE, Schunck WH, Wright JN, Corina D, Akhtar M (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are: lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). J Biol Chem 271:12445–12450

    Article  CAS  PubMed  Google Scholar 

  • Sono M, Roach MP, Coulter DE, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2887

    Article  CAS  PubMed  Google Scholar 

  • Syed K, Nelson DR, Riley R, Yadav JS (2013a) Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia breviaspora. Mycologia 105:1445–1455

    Article  CAS  PubMed  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013b) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Syed K, Porollo A, Miller D, Yadav JS (2013c) Rational engineering of the fungal P450 monooxygenase CYP5136A3 to improve its oxidizing activity toward polycyclic aromatic hydrocarbons. Protein Eng Des Sel 26:553–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomura D, Obika K, Fukamizu A, Shoun H (1994) Nitric oxide reductase cytochrome P-450 gene, CYP55, of the fungus Fusarium oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli. J Biochem 116:88–94

    CAS  PubMed  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Girhard M (2011) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36

    Article  PubMed  Google Scholar 

  • Van Bogaert INA, Groeneboer S, Saerens K, Soetaert W (2011) The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 278:206–221

    Article  PubMed  Google Scholar 

  • Woithe K, Geib N, Zerbe K, Li DB, Heck M, Fournier-Rousset S, Meyer O, Vitali F, Matoba N, Abou-Hadeed K, Robinson JA (2007) Oxidative phenol coupling reactions catalyzed by OxyB: a cytochrome P450 from the vancomycin producing organism. J Am Chem Soc 129:6887–6895

    Article  CAS  PubMed  Google Scholar 

  • Wright RL, Harris K, Solow B, White RH, Kennelly PJ (1996) Cloning of a potential cytochrome P450 from the archaeon Sulfolobus solfataricus. FEBS Lett 384:235–239

    Article  CAS  PubMed  Google Scholar 

  • Yano JK, Koo LS, Schuller DJ, Li H, Ortiz de Montellano PR, Poulos TL (2000) Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J Biol Chem 275:31086–31092

    Article  CAS  PubMed  Google Scholar 

  • Yano JK, Blasco F, Li H, Schmid RD, Henne A, Poulos TL (2003) Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus. J Biol Chem 278:608–616

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Vieille C, Savchenko A (1998) Thermozymes: biotechnology and structure–function relationships. Extremophiles 2:179–183

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

Syed thanks the Central University of Technology (CUT) for a grant from the University Research and Innovation Fund. Shale thanks the Medical Research Council (MRC) of South Africa. Krasevec thanks the Slovenian Research Agency Program P1-0104: Functional genomics and biotechnology for health. The authors thank Ms Barbara Bradley, Pretoria, South Africa for English language editing.

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khajamohiddin Syed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syed, K., Shale, K., Nazir, K.H.M.N.H. et al. Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila . Genes Genom 36, 321–333 (2014). https://doi.org/10.1007/s13258-013-0170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0170-9

Keywords

Navigation