Skip to main content
Log in

Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We explored the molecular diversity of cytochrome P450 genes in the filamentous fungus Aspergillus oryzae using bioinformatic and experimental approaches. Based on bioinformatic annotation, we found 155 putative genes of cytochromes P450 in the whole genome sequence; however, 13 of 155 appeared to be pseudogenes due to sequence deletions and/or inframe stop codon(s). There are 87 families of A. oryzae cytochromes P450 (AoCYPs), indicating considerable phylogenetic diversity. To characterize A. oryzae AoCYPs, we attempted to isolate cDNAs using RT-PCR and determined their transcriptional capabilities. To date, we have confirmed gene expression of 133 AoCYPs and cloned 121 AoCYPs as full-length cDNAs encoding a mature open reading frame. Using experimentally deduced sequences and intron–exon organization, we analyzed AoCYPs phylogenetically. We also identified intronic consensus sequences in AoCYPs genes. The experimentally validated exonic and intronic sequences will be a powerful advantage in identification and characterization of novel P450s from various ascomycetous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe K, Gomi K, Hasegawa F, Machida M (2006) Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162:143–153

    Article  PubMed  CAS  Google Scholar 

  • Aoyama Y, Noshiro M, Gotoh O, Imaoka S, Funae Y, Kurosawa N, Horiuchi T, Yoshida Y (1996) Sterol 14-demethylase P450 (P45014DM) is one of the most ancient and conserved P450 species. J Biochem 119:926–933

    PubMed  CAS  Google Scholar 

  • Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572

    Article  PubMed  CAS  Google Scholar 

  • Cheah MT, Wachter A, Sudarsan N, Breaker R (2002) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    Article  CAS  Google Scholar 

  • Chen S, Zhou D (1992) Functional domains of aromatase cytochrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments. J Biol Chem 267:22587–22594

    PubMed  CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    PubMed  CAS  Google Scholar 

  • Deng J, Carbone I, Dean RA (2007) The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes. BMC Evol Biol 7:30

    Google Scholar 

  • Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Forhman MA (1993) Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218:340–356

    Article  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Gotoh O (1993) Evolution and differentiation of P450 genes. In: Omura T, Ishimura Y, Fujii-Kuriyama Y (eds) Cytochrome P-450, 2nd edn. Kodansha, Tokyo, pp 255–272

    Google Scholar 

  • Graham SE, Peterson JA (1999) How similar are P450 s and what can their differences teach us. Arch Biophys Biochem 369:24–29

    Article  CAS  Google Scholar 

  • Hasemann CA, Ravichandran KG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure and function of cytochrome P450: a comparative analysis of three crystal structures. Structure 3:41–62

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  • Hohn TM, Desjardins AE, McCormick SP (1995) The Tri4 gene of Fusarium sporotrichioides encodes a cytochrome P450 monooxygenase involved in trichothecene biosynthesis. Mol Gen Genet 248:95–102

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Lee GI, Itoh A, Li L, DeRocher AE (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 123:711–724

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (1999) Biotransformation of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog 15:706–714

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Nakayashiki H, Kataoka T, Tamba T, Hashimoto Y, Tosa Y, Mayama S (2002) Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Mol Microbiol 45:1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Intikhab A, Hubbard SJ, Oliver SG, Rattray M (2007) A kingdom-specific protein domain HMM library for improved annotation of fungal genomes. BMC Genomics 8:97

    Article  CAS  Google Scholar 

  • Kelly DE, Kraevec N, Mullins J, Nelson DR (2008) The CYPome (Cytochrome P450 complement) of Aspergillus nidulans. Fung Genet Biol 46:S53–S61

    Article  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • Kitazume T, Takaya N, Nakayama N, Shoun H (2000) Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem 275:39734–39740

    Article  PubMed  CAS  Google Scholar 

  • Koymans L, Donne-Op Den Kelder GM, Koppele Te JM, Vermeulen NPE (1993) Cytochromes P450: their active site structure and mechanism of oxidation. Drug Metab Rev 25:325–387

    Article  PubMed  CAS  Google Scholar 

  • Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, Nakai S, Gomi K, Hanamoto H (2003) Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5’-UTR. FEBS Lett 555:516–520

    Article  PubMed  CAS  Google Scholar 

  • Lah L, Krasevec N, Trontelj P, Komel R (2008) High diversity and complex evolution of fungal cytochrome P450 reductase: cytochrome P450 systems. Fung Genet Biol 45:446–458

    Article  CAS  Google Scholar 

  • Lewis DFL, Watson E, Lake BG (1998) Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. Mutat Res 410:245–270

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Asai K, Sano M et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of koji mold and exploration of its future. DNA Res 15:173–183

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F, Wariishi H (2004) Functional diversity of cytochrome P450 s of the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 324:387–393

    Article  PubMed  CAS  Google Scholar 

  • Montiel MD, Lee HA, Archer DB (2006) Evidence of RIP (repeat-induced point mutation) in transposase sequence of Aspergillus oryzae. Fung Genet Biol 43:439–445

    Article  CAS  Google Scholar 

  • Nakahara K, Hatano K, Usuda K, Shoun H (1993) Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem 268:8350–8355

    PubMed  CAS  Google Scholar 

  • Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the Fusarium oxysporum. J Biochem 119:435–440

    PubMed  CAS  Google Scholar 

  • Nelson DR (1998) Metazoan cytochrome P450 evolution. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121:15–22

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Strobel HW (1988) On the membrane topology of vertebrate cytochrome P450 proteins. J Biol Chem 263:6038–6050

    PubMed  CAS  Google Scholar 

  • Nelson DR, Kamataki T, Waxman DJ et al (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol 12:1–51

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Koymans L, Kamataki T et al (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenet 6:1–42

    Article  CAS  Google Scholar 

  • Ortiz-de-Montellano PR (2005) Cytochrome P-450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Paquette SM, Bak S, Feyereisen R (2000) Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol 19:307–317

    Article  PubMed  CAS  Google Scholar 

  • Park J, Lee S, Choi J, Ahn K, Park B, Park J, Kang S, Lee YH (2008) Fungal cytochrome P450 database. BMC Genomics 9:402

    Article  PubMed  CAS  Google Scholar 

  • Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar D, Cleveland TE, Machida M (2006) Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol 44:9–11

    Article  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Haward AJ (1987) High-resolution crystal structure of P450cam. J Mol Biol 195:687–700

    Article  PubMed  CAS  Google Scholar 

  • Prieto R, Woloshuk CP (1997) ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocytin to aflatoxin in Aspergillus flavus. Appl Environ Microbiol 63:1661–1666

    PubMed  CAS  Google Scholar 

  • Rep M, Duyvesteijn RGE, Gale L, Usgaard T, Cornelissen BJC, Ma L-J, Ward TJ (2006) The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analysis of complete genomes: implications for automated gene prediction. Genomics 87:338–347

    Article  PubMed  CAS  Google Scholar 

  • Tailor MJ, Richardson T (1979) Applications of microbial enzymes in food systems and in biotechnology. Adv Appl Microbiol 25:7–35

    Article  Google Scholar 

  • Tamano K, Sano M, Yamane N, Terabayashi Y, Toda T, Sungawa M, Koike H, Hatamoto O, Umitsuki G, Takahashi T, Koyama Y, Asai R, Abe K, Machida M (2008) Transcriptional regulation of genes on the non-syntenic blocks of Aspergillus oryzae and its functional relationship to solid-state cultivation. Fung Genet Biol 45:139–151

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thore S, Leibundgut M, Ban N (2006) Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312:1208–1211

    Article  PubMed  CAS  Google Scholar 

  • Tijet N, Helvig C, Feyereisen R (2001) The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262:189–198

    Article  PubMed  CAS  Google Scholar 

  • Ullrich V (2003) Thoughts on thiolate tethering. Tribute and thanks to a teacher. Arch Biochem Biophys 409:45–51

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Ussery DW, Brunak S (2008) Analysis and prediction of gene splice sites in four Aspergillus genomes. Fung Genet Biol 46:S14–S18

    Article  CAS  Google Scholar 

  • Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y (1993) Sterol biosynthesis. In: Omura T, Ishimura Y, Fujii-Kuriyama Y (eds) Cytochrome P-450, 2nd edn. Kodansha, Tokyo, pp 93–101

    Google Scholar 

Download references

Acknowledgments

We are grateful to Hiroko Tsutsumi and Yoji Hata (Res. Inst., Gekkeikan Sake Co.) for providing A. oryzae strain RIB40 and for valuable technical advices. This research was supported in part by an NIRS Research Grant (Noda Institute for Scientific Research; to H. I.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hirofumi Ichinose or Hiroyuki Wariishi.

Additional information

Communicated by Axel Brakhage.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazmul Hussain Nazir, K.H.M., Ichinose, H. & Wariishi, H. Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae . Arch Microbiol 192, 395–408 (2010). https://doi.org/10.1007/s00203-010-0562-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0562-z

Keywords

Navigation