Skip to main content
Log in

Enhancing the properties of beam forming bolus in hyperthermia: numerical simulation and empirical verification

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this paper we present a simulation study of the induced specific absorption rate (SAR) within the phantom produced by radiofrequency radiation from a 8 MHz capacitive applicator. The main focus of the current study is on demonstrating the beam shaping properties of the bolus system as well as its effect on controlling the therapeutic area. Different electrical conductivities and geometries of the bolus were considered in the simulation of induced SAR distributions in a muscle-equivalent model with uniform dielectric properties. To validate the presented model, we carried out a comparison between the SAR simulation results and the temperature measurements in an agar split-phantom and an excellent agreement was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Karathanasis KT, Karanasiou IS, Uzunoglu NK (2007) Enhancing the focusing properties of a prototype non-invasive brain hyperthermia system: a simulation study. In: Proceedings of the 29th annual international conference of the IEEE EMBS, France

  2. Chou CK, Chen GW, Guy AW, Luk KH (1984) Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics 5:435–441

    Article  CAS  PubMed  Google Scholar 

  3. Kumaradas JC, Sherar MD (2003) Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method. Phys Med Biol 48:1–18

    Article  PubMed  Google Scholar 

  4. De Bruijne M, Samras T, Bakker JF, Rhoon GC (2006) Effects of water bolus size, shape and configuration on the AR distribution pattern of the Lucite cone applicator. Int J Hyperth 22:15–28

    Article  Google Scholar 

  5. De Leeuw AAC, Mooibroek J, Wijrdeman HK, Lagendijk JJW (1994) Three dimensional SAR steering by inhomogeneous bolus loading in the coaxial TEM hyperthermia system. ESHO-94, Abstracts. The Netherlands European Society for Hyperthermic Oncology, Amsterdam, p 27

  6. Kroeze H (2003) On the improvement of regional hyperthermia. Dissertation, University of Munich

  7. Van Rhoon GC, Rietveld PJM, Van der Zee JA (1998) 433 MHz Lucite cone waveguide applicator for superficial hyperthermia. Int J Hyperth 14:13–27

    Article  Google Scholar 

  8. Sherar MD, Liu FF, Newcombe DJ, Cooper B, Levin W, Taylor WB, Hunt JW (1993) Beam shaping for microwave waveguide hyperthermia applicators. Int J Radiat Oncol Biol Phys 25:849–857

    Article  CAS  PubMed  Google Scholar 

  9. Sherar MD, Clark H, Cooper B, Kumaradas J, Liu FF (1994) A variable microwave array attenuator for use with single-element waveguide applicators. Int J Hyperth 10:723–731

    Article  CAS  Google Scholar 

  10. Kumaradas JC, Sherar MD (2002) An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design. Int J Hyperth 18:441–453

    Article  CAS  Google Scholar 

  11. Michiyama T, Nikawa Y (2009) Simulation of SAR in the human body to determine effects of RF heating. IEICE Trans Commun 92:440–444

    Article  Google Scholar 

  12. Field SB, Hand JW (1990) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, Boca Raton

  13. Wust P, Nadobny J, Felix R, Deulhard P, Louis A, John W (1991) Strategies for optimized application of annular-phased-array systems in clinical hyperthermia. Int J Hyperth 7:157–173

    Article  CAS  Google Scholar 

  14. Wust P, Beck R, Berger J et al (2000) Electric field distributions in a phased-array applicator with 12 channels: measurements and numerical simulations. Med Phys 27:2565–2579

    Article  CAS  PubMed  Google Scholar 

  15. Das S, Clegg S, Samulski T (1999) Computational techniques for fast hyperthermia temperature optimization. Med Phys 26:319–328

    Article  CAS  PubMed  Google Scholar 

  16. Lin JC, Wang Z (2005) SAR and temperature distributions in canonical head models exposed to near and far-field electromagnetic radiation at different frequencies. Electromagn Biol Med 24:405–421

    Article  Google Scholar 

  17. Plewako J, Krawczyk A, Grochowicz B (2005) Computer engineering in applied electromagnetism. Springer, Dodrecht, pp 337–342

  18. Prishvin M, Zaridze R, Bit-Babik G, Faraone A (2010) Improved numerical modelling of heat transfer in human tissue exposed to RF energy. Australas Phys Eng Sci Med 33:307–317

    Article  PubMed  Google Scholar 

  19. Li Z, Vogel M, Maccarini PF et al (2011) Improved hyperthermia treatment control using SAR/temperature simulation and PRFS magnetic resonance thermal imaging. Int J Hyperth 27:86–99

    Article  CAS  Google Scholar 

  20. Aghayan SA, Sardari D, Mahdavi SRM, Zahmatkesh MH (2013) Estimation of overall heat transfer coefficient of cooling system in RF capacitive hyperthermia. J Biomed Sci Eng 6:509–517

    Article  Google Scholar 

  21. Kikuchi M, Amemiya Y, Egawa S et al (1993) Guide to the use of hyperthermic equipment. 1. Capacitively-coupled heating. Int J Hyperth 9:187–203

    Article  CAS  Google Scholar 

  22. Stogryn A (1987) Equations for calculating the dielectric constant of saline water. IEEE Trans Microw Theory Tech 19:733–736

    Article  Google Scholar 

  23. Lin JC, Wang YJ (1996) The cap-choke catheter antenna for microwave ablation treatment. IEEE Trans Biomed Eng 43:657–660

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Aghayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghayan, S.A., Sardari, D., Mahdavi, S.R.M. et al. Enhancing the properties of beam forming bolus in hyperthermia: numerical simulation and empirical verification. Australas Phys Eng Sci Med 37, 691–703 (2014). https://doi.org/10.1007/s13246-014-0306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0306-5

Keywords

Navigation