Skip to main content

Advertisement

Log in

Practical considerations for reporting surface dose in external beam radiotherapy: a 6 MV X-ray beam study

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this study, we assessed the accuracy of surface doses determined by direct measurement and treatment planning system (TPS) calculations, relative to benchmark Monte Carlo (MC) doses calculated at 70 μm for a 6 MV, 10 × 10 cm clinical radiotherapy beam. In a homogeneous phantom with both open and fixed wedged fields, we found that the relative dose measured with an Attix chamber underestimates the MC calculated surface dose by 2.9 %, while the relative dose measured with EBT2 Gafchromic film overestimates the MC surface dose by 0.9 %. There was a significant over-response of up to 20 % in doses calculated at <2 mm depth with the Eclipse analytic anisotropic algorithm (AAA) compared to corresponding MC doses for an open field. This drops to <2 % at 2 mm depth. In a heterogeneous phantom, EBT2 film overestimates relative dose by up to 3.1 % compared to the MC calculated surface dose. The AAA relative dose calculated in a heterogeneous phantom at 2 mm depth agrees to within 1.5 % with the MC doses calculated at the same depth, but overestimates the MC surface dose (at 70 μm) by up to 2.5 %. Our results suggest that TPS doses evaluated near the surface be reported with a depth that should be at least 2 mm and this should be taken into consideration in the planned target volume for treatments where surface dose is a constraining factor. Our study demonstrates the usefulness of EBT2 film for measuring surface dose: under homogeneous conditions, the effective point of measurement of EBT2 film can be considered equivalent to the clinical skin depth of 70 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.opengatecollaboration.org.

References

  1. Hsu S-H, Moran JM, Chen Y, Kulasekere R, Roberson PL (2010) Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields. Med Phys 37:2043–2053

    Article  PubMed  Google Scholar 

  2. Kurtz J, for the EUSOMA Working Party (2002) The curative role of radiotherapy in the treatment of operable breast cancer. Eur J Cancer 38:1961–1974

    Google Scholar 

  3. Court LE, Tishler RB, Allen AM, Xiang H, Makrigiorgos M, Chin L (2008) Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system. J Appl Clin Med Phys 9:29–35

    Google Scholar 

  4. ICRP Publication 59 (1992) The biological basis for dose limitation in the skin. Pergamon, Oxford

  5. Kucuk N, Kilic A, Kemikler G, Ozkan L, Engin K (2002) Analyses of surface dose from high energy photon beams for different clinical setup parameters. Turk J Med Sci 32:211–215

    Google Scholar 

  6. Devic S, Seuntjens J, Abdel-Rahman W, Evans M, Olivares M, Podgorsak EB (2006) Accurate skin dose measurements using radiochromic film in clinical applications. Med Phys 33:1116–1124

    Article  PubMed  CAS  Google Scholar 

  7. Chow JCL, Grigorov GN (2007) Surface dosimetry for oblique tangential photon beams: a Monte Carlo simulation study. Med Phys 35:70–76

    Article  Google Scholar 

  8. Kim S, Chihray RL, Timothy CZ, Jatinder RP (1998) Photon beam skin dose analyses for different clinical setups. Med Phys 25:860–866

    Article  PubMed  CAS  Google Scholar 

  9. Bilge H, Ozbek N, Okutan M, Cakir A, Acar H (2009) Surface dose and build-up region measurements with wedge filters for 6 and 18 MV photon beams. Jpn J Radiol 28:1071–1867

    Google Scholar 

  10. Yadav G, Yadav R, Kumar A (2009) Skin dose estimation for various beam modifiers and source-to-surface distances for 6 MV photons. J Med Phys 34:87–92

    Article  PubMed  Google Scholar 

  11. O’shea E, McCavana P (2003) Review of surface dose detectors in radiotherapy. J Radiother Pract 3:69–76

    Google Scholar 

  12. Rawlinson JA, Arlen D, Newcombe D (1992) Design of parallel plate ion chambers for build up measurements in megavoltage photon beams. Med Phys 19:641–648

    Article  PubMed  CAS  Google Scholar 

  13. Gerbi BJ (1993) The response characteristics of a newly designed plane-parallel ionization chamber in high-energy photon and electron beams. Med Phys 20:1411–1415

    Article  PubMed  CAS  Google Scholar 

  14. Cheung PKNYT, Butson MJ (2003) Variations in skin dose using 6 MV or 18 MV X-ray beams. Australas Phys Eng Sci Med 26:78–80

    Article  Google Scholar 

  15. Kron T, Elliot A, Wong T, Showell G, Clubb B, Metcalfe P (1993) X-ray surface dose measurements using TLD extrapolation. Med Phys 20:703–711

    Article  PubMed  CAS  Google Scholar 

  16. Lin JP, Chu TC, Lin SY, Liu MT (2001) Skin dose measurement by using ultra-thin TLDs. Appl Radiat Isot 55:383–391

    Article  PubMed  CAS  Google Scholar 

  17. Stathakis S, Li JS, Paskalev K, Yang J, Wang L, Ma C-M (2006) Ultra-thin TLDs for skin dose determination in high energy photon beams. Phys Med Biol 51:3549–3567

    Article  PubMed  CAS  Google Scholar 

  18. Scalchi P, Francescon P, Rajaguru P (2005) Characterization of a new MOSFET detector configuration for in vivo skin dosimetry. Med Phys 32:1571–1578

    Article  PubMed  Google Scholar 

  19. Xiang HF, Song JS, Chin DWH, Cormack RA, Tishler RB, Makrigiorgos GM, Court LE, Chin LM (2007) Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV X-ray beams and comparisons with Monte Carlo calculations. Med Phys 34:1266–1273

    Article  PubMed  Google Scholar 

  20. Qi Z-Y, Deng X-W, Huang S-M, Zhang L, He Z-C, Li XA, Kwan I, Lerch M, Cutajar D, Metcalfe P, Rosenfeld A (2009) In vivo verification of superficial dose for head and neck treatments using intensity-modulated techniques. Med Phys 36:59–70

    Article  PubMed  Google Scholar 

  21. Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares CG (1998) Radiochromic film dosimetry: recommendations of AAPM radiation therapy committee task group 55. Med Phys 25:2093–2115

    Article  PubMed  CAS  Google Scholar 

  22. Butson MJ, Cheung T, Yu P, Chrrie M (2004) Surface dose extrapolation measurements with radiographic film. Phys Med Biol 49:N197–N201

    Article  PubMed  Google Scholar 

  23. Chung H, Jin H, Dempsey J (2005) Evaluation of surface and build-up region dose for intensity-modulated radiation therapy in head and neck cancer. Med Phys 32:2682–2689

    Article  PubMed  Google Scholar 

  24. Kim J, Hill R, Claridge Mackonis E, Kuncic Z (2010) An investigation of backscatter factors for kilovoltage X-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements. Phys Med Biol 55:783–797

    Article  PubMed  CAS  Google Scholar 

  25. Lindsay P, Rink A, Ruschin M, Jaffray D (2010) Investigation of energy dependence of EBT and EBT-2 Gafchromic film. Med Phys 37:571–576

    Article  PubMed  CAS  Google Scholar 

  26. Sutherland JGH, Rogers DWO (2010) Monte Carlo calculated absorbed-dose energy dependence of EBT and EBT2 film. Med Phys 37:1110–1116

    Article  PubMed  CAS  Google Scholar 

  27. Smith L, Hill R, Nakano M, Kim J, Kuncic Z (2010) The measurement of backscatter factors of kilovoltage X-ray beams using Gafchromic™ film. Australas Phys Eng Sci Med 34:261–266

    Article  Google Scholar 

  28. Arjomandy B, Tailor R, Anand A, Sahoo N, Gilin M, Prado K, Vicic M (2010) Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Med Phys 37:1942–1947

    Article  PubMed  CAS  Google Scholar 

  29. Thomas SJ, Hoole ACF (2004) The effect of optimization on surface dose in intensity modulated radiotherapy (IMRT). Phys Med Biol 49:4919–4928

    Article  PubMed  Google Scholar 

  30. Higgins PD, Han EY, Yuan JL, Hui S, Lee CK (2007) Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol 52:1135–1146

    Article  PubMed  CAS  Google Scholar 

  31. Knoos T, Ahnesjo A, Nilsson P, Weber L (1995) Limitations of a pencil beam approach to photon dose calculations in lung tissue. Phys Med Biol 40:1411–1420

    Article  PubMed  CAS  Google Scholar 

  32. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Dyke JV (1998) American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 25:1773–1829

    Article  PubMed  CAS  Google Scholar 

  33. Chiu-Tsao S-T, Chan MF (2009) Photon beam dosimetry in the superficial buildup region using radiochromic EBT film stack. Med Phys 36:2074–2083

    Article  PubMed  Google Scholar 

  34. Roland TF, Stathakis S, Ramer R, Papanikolaou N (2008) Measurement and comparison of skin dose for prostate and head-and-neck patients treated on various IMRT delivery systems. Appl Radiat Isot 66:1844–1849

    Article  PubMed  CAS  Google Scholar 

  35. Ma C-M, Mok E, Kapur A, Pawlicki T, Findley D, Brain S, Forster K, Boyer AL (1999) Clinical implementation of a Monte Carlo treatment planning system. Med Phys 26:2133–2143

    Article  PubMed  CAS  Google Scholar 

  36. Panettieri V, Barsoum P, Westermark M, Brualla L, Lax I (2009) AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Radiother Oncol 93:94–101

    Article  PubMed  Google Scholar 

  37. Esch AV, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamaki S, Alakuijala J, Paiusco M, Lori M, Huyskens DP (2006) Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys 33:4130–4148

    Article  PubMed  Google Scholar 

  38. Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knoos T, Nicolini G, Cozzi L (2007) On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 52:1363–1385

    Article  PubMed  Google Scholar 

  39. Nahum AE (1999) Condensed-history Monte-Carlo simulation for charged particles: what can it do for us? Radiat Environ Biophys 38:163–173

    Article  PubMed  CAS  Google Scholar 

  40. Abdel-Rahman W, Seuntjens JP, Verhaegen F, Deblois F, Podgorsak EB (2005) Validation of Monte Carlo calculated surface doses for megavoltage photon beams. Med Phys 32:286–298

    Article  PubMed  Google Scholar 

  41. Mellenberg DE (1990) Determination of build-up region over-response corrections for a Markus-type chamber. Med Phys 17:1041–1044

    Article  PubMed  Google Scholar 

  42. Kawrakow I, Rogers DWO, Walters BRB (2004) Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Med Phys 31:2883–2898

    Article  PubMed  CAS  Google Scholar 

  43. Kawrakow I, Walters BRB (2006) Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med Phys 33:3046–3056

    Article  PubMed  CAS  Google Scholar 

  44. Walters BRB, Kawrakow I (2007) Technical note: overprediction of dose with default PRESTA-I boundary crossing in DOSXYZnrc and BEAMnrc. Med Phys 34:647–650

    Article  PubMed  CAS  Google Scholar 

  45. Rogers DWO, Walters B, Kawrakow I (2005) BEAMnrc users manual. NRC Report PIRS-509, National Research Council of Canada, Ottawa

  46. Devic S, Tomic N, Soares CG, Podgorsak EB (2009) Optimizing the dynamic range extension of a radiochromic film dosimetry. Med Phys 36:429–437

    Article  PubMed  Google Scholar 

  47. ISO (1995) Guide to the expression of uncertainties in measurement, 2nd edn. International Organisation for Standardization, Geneva

    Google Scholar 

  48. McEwen MR, Kawrakow I, Ross CK (2008) The effective point of measurement of ionization chambers and the build-up anomaly in MV X-ray beams. Med Phys 35:950–958

    Article  PubMed  CAS  Google Scholar 

  49. Hill R, Mo Z, Haque M, Baldock C (2009) An evaluation of ionization chambers for the relative dosimetry of kilovoltage X-ray beams. Med Phys 36:3971–3981

    Article  PubMed  CAS  Google Scholar 

  50. ICRU Publication 44 (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU Publications, Bethesda

  51. Schneider U, Pedroni E, Lomax A (1996) The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol 41:111–124

    Article  PubMed  CAS  Google Scholar 

  52. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661

    Article  PubMed  CAS  Google Scholar 

  53. Ding GX (2002) Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator. Phys Med Biol 47:1025–1046

    Article  PubMed  Google Scholar 

  54. Gagne IM, Zavgorodni S (2007) Evaluation of the analytic anisotropic algorithm in an extreme water–lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys 8:33–45

    Google Scholar 

  55. Tillikainen L, Siljamaki S, Helminen H, Alakuijala J, Pyyry J (2007) Determination of parameters for a multiple-source model of megavoltage photon beams using optimization methods. Phys Med Biol 52:1441–1467

    Article  PubMed  CAS  Google Scholar 

  56. Tillikainen L, Helminen H, Torsti T, Siljamaki S, Alakuijala J, Pyyry J, Ulmer W (2008) A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol 53:3821–3839

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Radiation Oncology, Royal Prince Alfred Hospital, for access to clinical facilities used for the experimental measurements and the University of Sydney for computational resources used for the MC simulations. The authors also thank Dr. Xue Yang for her computational technical support, Professors Anatoly Rozenfeld, Tomas Kron and David Thwaites for valuable discussions, Dr. Susan Carroll for clinical advice on breast radiotherapy and Varian Medical Systems for providing information on the Eclipse TPS and technical specifications for the linear accelerator used in the MC model. This study was financially supported by the National Breast Cancer Foundation of Australia (www.nbcf.org.au).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Hill, R. & Kuncic, Z. Practical considerations for reporting surface dose in external beam radiotherapy: a 6 MV X-ray beam study. Australas Phys Eng Sci Med 35, 271–282 (2012). https://doi.org/10.1007/s13246-012-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0145-1

Keywords

Navigation