Skip to main content
Log in

Effect of alicyclic monomers on thermal properties of transparent biodegradable polyesters

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Amorphous biodegradable copolyesters have been synthesized using various alicyclic monomers, including 1,4-cyclohexanedimethanol (CHDM), 1,4-cyclohexanediol (CHDO), isosorbide (1,4:3,6-dianhidro-D-sorbitol) (IS), and 1,4-cyclohexane dicaboxylic acid (CHDA), to enhance the thermal properties of polyesters. We have studied the effect of alicyclic monomers on the thermal properties, especially, on the glass transition temperature (T g ) of the amorphous copolyesters. On incorporating alicyclic diol monomers into poly(ethylene succinate-co-terephthalate) (PEST), T g of amorphous copolyesters was greatly increased. As the rigidity of alicyclic monomers increases, the effect becomes more significant. By comparing copolyesters synthesized with the same molar ratio of alicyclic monomers in the feed, we found that the molar ratio of IS in the copolyester product was much smaller than those of CHDM and CHDO. Nonetheless, IS induced the largest T g enhancement in copolyesters even though a much smaller molar ratio of IS was incorporated in the product compared to CHDM and CHDO. To study the effects of alicyclic diacid monomers, copolyesters containing CHDA were synthesized. As in the case of alicyclic diols, CHDA was found to be very effective in enhancing the thermal properties. Among these copolyesters produced, PEI30ST synthesized with 30 mol% of succinic acid (SA) and 70 mol% of dimethyl terephthalate (DMT) as diacid and 30 mol% of IS as diol exhibited the highest T g of 74.2 °C. And poly(ethylene-co-CHDM succinate-co-terephthalate) (PEC30ST70) and poly(ethylene-co-IS succinate-co-terephthalate) (PEI30ST70) exhibited high optical transmittance and were confirmed to be biodegradable, exhibiting about 50% and 40% biodegradability, respectively, after 50 days in a biodegradability test under compost conditions. Hence, these novel transparent biodegradable polyesters could be highly useful in flexible packaging applications requiring transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Richard Turner, J. Polym. Sci., Part A: Polym. Chem., 42, 5847 (2004).

    Article  Google Scholar 

  2. R. Quintana, A. M. de Ilarduya, A. Alla, and S. Muñoz-Guerra, J. Polym. Sci., Part A: Polym. Chem., 49, 2252 (2011).

    Article  CAS  Google Scholar 

  3. Y. Tsai, C.-H. Fan, C.-Y. Hung, and F.-J. Tsai, J. Appl. Polym. Sci., 104, 279 (2007).

    Article  CAS  Google Scholar 

  4. Y. Tsai, L. C. Jheng, and C. Y. Hung, Polym. Degrad. Stab., 95, 72 (2010).

    Article  CAS  Google Scholar 

  5. H. R. Kricheldorf, G. Behnken, and M. Sell, J. Macromol. Sci., Pure Appl. Chem., 44, 679 (2007).

    Article  CAS  Google Scholar 

  6. L. Tan, Y. Chen, W. Zhou, J. Wei, and S. Ye, J. Appl. Polym. Sci., 121, 2291 (2011).

    Article  CAS  Google Scholar 

  7. O. Martin and L. Averous, Polymer, 42, 6209 (2001).

    Article  CAS  Google Scholar 

  8. G. L. Siparsky, K. J. Voorhees, J. R. Dorgan, and K. Schilling, J. Environ. Polym. Degrad., 5, 125 (1997).

    CAS  Google Scholar 

  9. J. W. Park and S. S. Im, J. Polym. Sci., Part B: Polym. Phys., 40, 1931 (2002).

    Article  CAS  Google Scholar 

  10. M. Harada, T. Ohya, K. Iida, H. Hayashi, K. Hirano, and H. Fukuda, J. Appl. Polym. Sci., 106, 1813 (2007).

    Article  CAS  Google Scholar 

  11. M. Shibata, Y. Inoue, and M. Miyoshi, Polymer, 47, 3557 (2006).

    Article  CAS  Google Scholar 

  12. J. Lu, Z. Qiu, and W. Yang, Polymer, 48, 4196 (2007).

    Article  CAS  Google Scholar 

  13. N. Ljungberg and B. Wessln, Polymer, 44, 7679 (2003).

    Article  CAS  Google Scholar 

  14. Z. Florjanczyk, A. Józwiak, A. Kundys, A. Plichta, M. Debowski, G. Rokicki, P. Parzuchowski, P. Lisowska, and A. Zychewicz, Polym. Degrad. Stab., 97, 1852 (2012).

    Article  CAS  Google Scholar 

  15. Yangchun Liu, S. Richard Turner, J. Polym. Sci., Part A: Polym. Chem., 48, 2162 (2010).

    Article  CAS  Google Scholar 

  16. K. Tomita and H. Ida, Polymer, 16, 185 (1975).

    Article  CAS  Google Scholar 

  17. H. C. Ki and O. O. Park, Polymer, 42, 1849 (2001).

    Article  CAS  Google Scholar 

  18. F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J.-P. Pascault, Prog. Polym. Sci., 35, 578 (2010).

    Article  CAS  Google Scholar 

  19. D. N. Bikiaris, G. Z. Papageorgiou, and D. S. Achilias, Polym. Degrad. Stab., 91, 31 (2006).

    Article  CAS  Google Scholar 

  20. J. Xu and B.-H. Guo, Biotechnol. J., 5, 1149 (2010).

    Article  CAS  Google Scholar 

  21. R. Pritchard, SPE Transactions, 4, 66 (1964).

    CAS  Google Scholar 

  22. L.-M. Deng, Y.-Z. Wang, K.-K. Yang, X.-L. Wang, Q. Zhou, and S.-D. Ding, Acta Mater., 52, 5871 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ok Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J.S., Kang, S.M., Kim, M.K. et al. Effect of alicyclic monomers on thermal properties of transparent biodegradable polyesters. Macromol. Res. 24, 609–616 (2016). https://doi.org/10.1007/s13233-016-4078-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4078-5

Keywords

Navigation