Skip to main content
Log in

A novel strain of Bacillus amyloliquefaciens displaying broad spectrum antifungal activity and its underlying mechanism

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

One isolate among the various bacterial soil isolates screened in our study showed broad spectrum and profound antifungal activity and was characterized by biochemical and molecular approaches. Sequence analysis of the 16S rRNA gene indicated more than 98 % sequence similarity with Bacillus amyloliquefaciens ATCC 23350T and its variant Bacillus velezensis BCRC 17467T. However, the biochemical characteristics of the isolated strain, such as cellular fatty acid composition, differed significantly from those of these two Bacillus strains, with the isolated strain containing anteiso-C15:0 (terminally branched saturated fatty acids) as a predominant fatty acid. The band pattern of the pulsed field gel electrophoresis profile of AvrII-digested genomic DNA of the isolate also showed significant variation from those of the two closely related Bacillus type strains. Based on these differences, the isolate was considered to be a new strain of B. amyloliquefaciens and deposited as Bacillus amyloliquefaciens strain fiply 3A in the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) culture collection (DSM 22646) and in MTCC, IMTECH, Chandigarh (DSM 22646). Purification of the extracellular antifungal compound produced by the isolate by HPLC and its analysis by LC-ESI-MS revealed it to be a bacillomycin D-like cyclic lipopeptide. The antifungal activity of the compound was found to be due to its inhibitory effect on β-1,3-glucan biosynthesis, a major fungal cell-wall component. Thus, we describe here the identification and characterization of a novel strain of Bacillus amyloliquefaciens (fiply 3A) which produces antifungal lipopeptide and the deciphering of its mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert RA, Archambault J, Rosselló-Mora R, Tindall BJ, Mathen M (2005) Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55:2125–2130

  • Barchiesi F, Colombo AL, McGough DA, Rinaldi MG (1994) Comparative study of broth macrodilution and microdilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory proposed standard. J Clin Microbiol 32(10):2494–2500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Basurto-Cadena MGL, Vázquez-Arista M, García-Jiménez J, Salcedo-Hernández R, Bideshi DK, Barboza-Corona JE (2012) Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. Sci World J 2012:7. doi:10.1100/2012/384978

    Article  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808

    Article  PubMed  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Wang N, Wang XM, Hu JC, Wang SJ (2010) Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour Technol 101:8822–8827

    Article  CAS  PubMed  Google Scholar 

  • Cui T-B, Chai H-Y, Jiang L-X (2012) Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules 17:7336–7347

    Article  CAS  PubMed  Google Scholar 

  • Ellis JG, Dodds PN, Lawrence GJ (2007) The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi. Curr Opin Microbiol 10:326–331

    Article  CAS  PubMed  Google Scholar 

  • Free S (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    Article  CAS  PubMed  Google Scholar 

  • Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbj and its inhibition effects against Aspergillus flavus. Food Control 36:8–14

    Article  CAS  Google Scholar 

  • Hajare SN, Subramanian M, Gautam S, Sharma A (2013) Induction of apoptosis in human cancer cells by a Bacillus lipopeptide bacillomycin D. Biochimie 95(9):1722–1731

    Article  CAS  PubMed  Google Scholar 

  • Hassan MN, Osborn AM, Hafeez FY (2010) Molecular and biochemical characterization of surfactin producing Bacillus species antagonistic to Colletotrichum falcatum Went causing sugarcane red rot. Afr J Microbiol Res 4(20):2137–2142

    CAS  Google Scholar 

  • Huang A, Edwards F, Bernard EM, Armstrong D, Schmitt HJ (1990) In vitro activity of the new semi-synthetic polypeptide cilofungin (LY121019) against Aspergillus and Candida species. Eur J Clin Microbiol Infect Dis 9:697–699

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  CAS  PubMed  Google Scholar 

  • Kabak B (2010) Prevention and Management of Mycotoxins in Food and Feed. In: Rai M, Varma A (eds) Mycotoxins in food, feed and bioweapons. Springer, Berlin, Heidelberg

    Google Scholar 

  • Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi Y-T (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949

    Article  CAS  PubMed  Google Scholar 

  • Kumar SN, Sreekala SR, Chandrasekaran D, Nambisan B, Anto RJ (2014) Biocontrol of Aspergillus species on peanut kernels by antifungal diketopiperazine producing Bacillus cereus associated with entomopathogenic nematode. PLoS One 9(8): e106041. doi:10.1371/journal.pone.0106041

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas C (1994) Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother 38:1480–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HA, Kim JH (2012) Isolation of Bacillus amyloliquefaciens strains with antifungal activities from Meju. Prev Nutr Food Sci 17:64–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leelasuphakul W, Hemmanee P, Chuenchitt S (2008) Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol Technol 48:113–121

    Article  CAS  Google Scholar 

  • Martinez-Absalon SC, del Orozco-Mosqueda MC, Martinez-Pacheco MM, Farias-Rodriguez R, Govindappa M, Santoyo G (2012) Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere. Genet Mol Res 11(3):2665–2673

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31:1–8

    Article  Google Scholar 

  • Momany M, Lindsey R, Hill TW, Richardson EA, Momany C, Pedreira M, Guest GM, Fisher JF, Hessler RB, Roberts KA (2004) The Aspergillus fumigatus cell wall is organized in domains that are remodelled during polarity establishment. Microbiology 150:3261–3268

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  PubMed  Google Scholar 

  • Pujol I, Guarro J, Llop C, Soler L, Fernandez-Ballart J (1996) Comparison study of broth macrodilution and microdilution antifungal susceptibility tests for the filamentous fungi. Antimicrob Agents Chemother 40(9):2106–2110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quiroga EN, Sampietro AR, Vattuone MA (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74:89–96

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Roberston SN, Williams C (2014) Strength in numbers: antifungal strategies against fungal biofilms. Int J Antimicrob Agents 43(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Vitullo D, Senatore M, Lima G, Lanzotti V (2013) Antifungal cyclic lipopeptides from Bacillus amyloliquefaciens strain BO5A. J Nat Prod 76:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-García C, Béjar V, Martínez-Checa F, Llamas I, Quesada E (2005) Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int J Syst Evol Microbiol 55:191–195

    Article  PubMed  Google Scholar 

  • Souto GI, Correa OS, Montecchia MS, Kerber NL, Pucheu NL, Bachur M, Garcia AF (2004) Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J Appl Microbiol 97:1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Tabbene O, Kalai L, Ben Slimene I, Karkouch I, Elkahoui S, Gharbi A, Cosette P, Mangoni ML, Jouenne T, Limam F (2011) Anti-candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiol Lett 316(2):108–114

  • Thasana N, Prapagdee B, Rangkadilok N, Sallabhan R, Aye SL, Ruchirawat S, Loprasert S (2010) Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated beta-amino acid. FEBS Lett 584:3209–3214

    Article  CAS  PubMed  Google Scholar 

  • Van den Velde S, Lagrou K, Desmet K, Wauters G, Verhaegen J (2006) Species identification of Corynebacteria by cellular fatty acid analysis. Diagn Microbiol Infect Dis 54(2):99–104

    Article  PubMed  Google Scholar 

  • Velasco J (1975) Fluorometric measurement of aflatoxin adsorbed on florisil in minicolumns. J Assoc Off Anal Chem 58:757–763

  • Wan T-C, Cheng F-Y, Liu Y-T, Wang C-M, Shyu C-L, Chen C-M, Lin L-C, Sakata R (2008) Identification of a novel Bacillus species isolated from Calculus bovis. Anim Sci J 79:693–698

  • Wang L-T, Lee F-L, Tai C-J, Kuo H-P (2008) Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int J Syst Evol Microbiol 58:671–675

    Article  CAS  PubMed  Google Scholar 

  • Wingard JR, Leather H (2004) A new era of antifungal therapy. Biol Blood Marrow Transplant 10:73–90

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Quan X, Xue B, Goodwin PH, Lu S, Wang J, Wei D, Wu C (2015) Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biol Control 85:52–58

    Article  CAS  Google Scholar 

  • Yavuz E, Gunes H, Harsa S, Bulut C, Yenidunya AF (2004) Optimization of pulsed field gel electrophoresis (PFGE) conditions for thermophilic bacilli. World J Microb Biot 20:871–874

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Gautam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 27000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajare, S.N., Gautam, S. & Sharma, A. A novel strain of Bacillus amyloliquefaciens displaying broad spectrum antifungal activity and its underlying mechanism. Ann Microbiol 66, 407–416 (2016). https://doi.org/10.1007/s13213-015-1123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1123-0

Keywords

Navigation