Skip to main content
Log in

Response of cellular fatty acids to environmental stresses in endophytic Micrococcus spp.

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The response of cellular fatty acids to various environmental stresses was studied using two endophytic species of Micrococcus. A total of 18 samples with three biological replicates from low, moderate and high stress conditions of salt (0.5, 5 and 10 % NaCl), pH (5, 7 and 10) and temperatures (15, 25 and 41 °C) were analysed. Branched chain fatty acids dominated in both the organisms, while saturated and unsaturated fatty acids were detected less frequently. The mole percentage of isoforms of branched chain fatty acids gradually increased with increasing salinity and showed more than a twofold increase at higher concentration of salt (10 %). Unlike Micrococcus yunnanensis DSM 21948T, Micrococcus aloeverae MCC 2184T showed more agreement with previous findings related to stress tolerance in other bacteria. Data indicate that iso fatty acids are responsible for the growth of Micrococcus at high salt concentration. In addition, instead of individual fatty acids, the ratio of the total content of iso/anteiso forms modulates membrane fluidity and functions during environmental stress in Micrococcus. For a comparative study of salinity stress in Gram-positive and Gram-negative bacteria, the strain of Halomonas was alsoincluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albuquerque L, Rainey FA, Nobre MF, da Costa MS (2008) Elioraea tepidiphila gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Int J Syst Evol Microbiol 58:773–778

    Article  PubMed  Google Scholar 

  • Andreishcheva EN, Isakova EP, Sidorov NN, Abramova NB, Ushakova NA, Shaposhnikov GL, Soares MI, Zvyagilskaya RA (1999) Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry (Mosc) 64:1061–1067

  • Buyer JS (2008) Identification of bacteria from single colonies by fatty acid analysis. J Microbiol Meth 48:259–265. doi:10.1016/S0167-7012(01)00327-X

    Article  Google Scholar 

  • Canion A, Prakash O, Green SJ, Jahnke L, Kuypers MM, Kostka JE (2013) Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway). Environ Microbiol 15:1606–1618. doi:10.1111/1462-2920.12110

    Article  CAS  PubMed  Google Scholar 

  • Chihib NE, Ribeirodasalvam M, Delattre G, Laroche M, Federighi M (2003) Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes under different temperature and salinity conditions. FEMS Microbiol Lett 218:155–160

    Article  CAS  PubMed  Google Scholar 

  • Cohn F (1872) Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen Heft 1:127–244

  • Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmatic membranes. J Microbiol Methods 52:149–182. doi:10.1016/S0167-7012(02)00155-0

    Article  CAS  PubMed  Google Scholar 

  • Giotis ES, McDowell DA, Blair IS, Wilkinson BJ (2007) Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl Environ Microbiol 73:997–1001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Julaka J, Ryska M, Koruna I, Mencikova E (1989) Cellular fatty acids and fatty aldehydes of Listeria and Erysipelothrix. Zentralbl Bakteriol 272:171–180

    Article  Google Scholar 

  • Juneja VK, Davidson PM (1993) Influence of temperature on the fatty acid profile of Listeria monocytogenes. J Rapid Methods Automat Microbiol 2:73–81. doi:10.1111/j.1745-4581.1993.tb00338.x

    Article  CAS  Google Scholar 

  • Kaneda T (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanemasa Y, Yoshioka T, Hayashi H (1972) Alteration of the phospholipid composition of Staphylococcus aureus cultured in medium containing NaCl. Biochim Biophys Acta 280:444–450. doi:10.1016/0005-2760(72)90251-2

  • Kaur A, Chaudhary A, Choudhary R, Kaushik R (2005) Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr Scien 89:1103–1112

    CAS  Google Scholar 

  • Liu XY, Wang BJ, Jiang CY, Liu SJ (2007) Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 57:66–69. doi:10.1099/ijs.0.64489-0

    Article  CAS  PubMed  Google Scholar 

  • Lopez CS, Heras H, Garda H, Ruzal S, Sanchez-Rivas C, Rivas E (2000) Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol 55:137–142. doi:10.1016/S0168-1605(00)00171-9

    Article  CAS  PubMed  Google Scholar 

  • Machado MC, Lopez CS, Heras H, Rivas EA (2004) Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422:61–70. doi:10.1016/j.abb.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  • Mazzota AS, Montville TJ (1997) Nisin induces changes in cellular fatty acid composition of Listeria monocytogenes nisin resistant strains at 10C and 30 °C. J Appl Microbiol 82:32–38

    Article  Google Scholar 

  • Miller KJ (1985) Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp. J Bacteriol 162:263–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mrozik A, Seget ZP, Łabużek S (2004) Cytoplasmatic bacterial membrane responses to environmental perturbations. Polish J Environ Stud 13:487–494

    CAS  Google Scholar 

  • Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177

  • Paulucci NS, Medeot DB, Woelke M, Dardanelli MS, Lema MG (2013) Monounsaturated fatty acid aerobic synthesis in Bradyrhizobium TAL1000 peanut nodulating is affected by temperature. J Appl Microbiol 114:1457–1467. doi:10.1111/jam.12155

  • Prakash O, Green SJ, Jasrotia P, Overholt WA, Canion A, Watson DB, Kostka JE (2012) Rhodanobacter denitrificans nov., isolated from nitrate-rich zones of a contaminated aquifer. Int J Syst Evol Microbiol 62:2457–2462. doi:10.1099/ijs. 0.035840-0

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Nimonkar Y, Shouche YS (2013) Practice and prospects of microbial preservation. FEMS Microbiol Lett 339:1–9. doi:10.1111/1574-6968.12034

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Nimonkar Y, Munot H, Sharma A, Vemuluri VR, Chavadar MS, Shouche YS (2014) Description of Micrococcus aloeverae sp. nov.: an endophytic actinobacterium isolated from leaf of Aloe barbadensis. Int J Syst Evol Microbiol, doi:10.1099/ijs.0.063339-0

  • Rieser G, Scherer S, Wenning M (2013) Micrococcus cohnii nov., isolated from the air in a medical practice. Int J Syst Evol Microbiol 63:80–85. doi:10.1099/ijs. 0.036434-0

    Article  PubMed  Google Scholar 

  • Russel NJ, Fukunga NA (1990) Comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182. doi:10.1016/0378-1097(90)90530-4

    Article  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71(5):23–525

    Google Scholar 

  • Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692. doi:10.1099/00207713-45-4-682

  • Thomas KC, Hynes SH, Ingledew WM (1994) Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 60:1519–1524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tymczyszyn EE, Gómez-Zavaglia A, Disalvo EA (2005) Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. Arch Biochem Biophys 443:66–73. doi:10.1016/j.abb.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  • Wieser M, Denner EBM, Kampfer P, Schumann P, Tindall B, Steiner U, Vybiral D, Lubitz W, Maszenan AM (2002) Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 52:629–637. doi:10.1099/ijs.0.01901-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Liu XY, Liu SJ (2010) Agrococcus terreus nov. and Micrococcus terreus nov., isolated from forest soil. Int J Syst Evol Microbiol 60:1897–1903. doi:10.1099/ijs.0.013235-0

    Article  CAS  PubMed  Google Scholar 

  • Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387. doi:10.1099/ijs. 0.010256-0

  • Zhu K, Ding X, Julotok M, Wilkinson BJ (2005) Exogenous isoleucine and fatty acid shortening ensure the high content of anteiso-C-15:0 fatty acid required for low-temperature growth of Listeria monocytogenes. Appl Environ Microbiol 71:8002–8007. doi:10.1128/AEM. 71.12.8002-8007.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT; Grant no. BT/PR/0054/NDB/52/94/2007), Government of India, under the project “Establishment of microbial culture collection.”

Conflict of interest

The authors declare that they do not have any conflict of interest regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, O., Nimonkar, Y., Shaligram, S. et al. Response of cellular fatty acids to environmental stresses in endophytic Micrococcus spp.. Ann Microbiol 65, 2209–2218 (2015). https://doi.org/10.1007/s13213-015-1061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1061-x

Keywords

Navigation