Skip to main content
Log in

Evaluation of ethanol production by a new isolate of yeast during fermentation in synthetic medium and sugarcane bagasse hemicellulosic hydrolysate

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l−1 ethanol from 30 g l−1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g−1 and volumetric productivity of 0.31 g l−1 h−1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l−1 ethanol from 30 g l−1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g−1, respectively, compared with 66.79% w/v and 0.45 g g−1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g−1 and volumetric productivity of 0.33 g l−1 h−1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbi M, Kuhad RC, Singh A (1996) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Ind Microbiol 17:20–23

    Article  PubMed  CAS  Google Scholar 

  • Agbogbo FK, Coward-Kelly G (2008)Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis.Biotechnol Lett 30:1515–1524

    Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositaogy". Mol Phylogenet Evol 1(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Canilha L, Carvalho W, Maria das Gracas de Almeida Felipe, Joao Bastista de Almeida e Silva, Giulietti M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84-92

    Google Scholar 

  • Carvalho W, Batista MA, Canilha L, Santos JC, Converti A, Silva SS (2004a) Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:1308–1312

    Article  CAS  Google Scholar 

  • Carvalho W, Canilha L, Mussatto SI, Dragone G, Morales MLV, Solenzal AIN (2004b) Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. J Chem Technol Biotechnol 79:863–868

    Article  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Biores Technol 98:1947–1950

    Article  CAS  Google Scholar 

  • du Preez JC, Bosch M, Prior B (1986) Xylose fermentation by Candida shehatae and Pichia stipitis: effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8:360–364

    Article  Google Scholar 

  • Eken-Saraçoglu N, Arslan Y (2000) Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol Lett 22:855–858

    Article  Google Scholar 

  • Fell JK, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysi. Int J Syst Evol Microbiol 50:1351–1371

    Article  PubMed  CAS  Google Scholar 

  • Gans I, Potts D, Matsuo A, Tse T, Holysh M, Assarsson P (1989) Fermentation of hardwood (aspen) hemihemicellulose hydrolysate to fuel ethanol by Pichia stipitis R In: BIOENERGY: Proceedings of the 7th Canadian Bioenergy Research and Development, NRCC Ottawa, Canada, pp 419–423

  • Ghosh P, Singh A (1993) Physiocochemical and biological treatments foe enzymatic/microbial conversion of lignocellulosic biomass. Adv Appl Microbiol 39:295–333

    Article  CAS  Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100:1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Jefferies TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of xylose- fermenting yeasts. Enzyme Microbiol Technol 16:922–932

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee WG, Lee JS, Shin CS, Park SC, Chang HN, Chang YK (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 77–79:547–559

    Article  PubMed  Google Scholar 

  • Marques S, Alves L, Roseiro JC, Girio FM (2008) Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenergy 32:400–406

    Article  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2001) Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnol Lett 23:1681–1684

    Article  CAS  Google Scholar 

  • Naumova ES, Serpova EV, Naumov GI (2005) Speciation in the yeast lachancea thermotolerans: molecular genetic evidence. Dokl Biol Sci 405:469–471

    Article  PubMed  CAS  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    Article  PubMed  CAS  Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97:107–116

    Article  PubMed  CAS  Google Scholar 

  • Roberto IC, Lacis LS, Barbosa MFS, Mancilha IM (1991) Utilization of sugar cane bagasse hemicellulose hydrolysate by Pichia stipitis for the production of ethanol. Process Biochem 26:15–21

    Article  CAS  Google Scholar 

  • Silva JPA (2007) Master dissertation, Universidade de São Paulo, Lorena

  • Silva SS, Matos ZR, Carvalho W (2005) Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction. Biotechnol Prog 21:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Suihko M-L (1983) The fermentation of different carbon sources by Fusarium oxysporum. Biotechnol Lett 5:721–724

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Telli-Okur M, Eken-Saraçoglu N (2008) Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Biores Technol 99:2162–2169

    Article  CAS  Google Scholar 

  • Villarreal MLM, Prata AMR, Felipe MGA, Almeida e Silva JB (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24

    Article  CAS  Google Scholar 

  • Wiselogel A, Tyson J, Johnsson D (1996) In: Wyman CE (ed) Handbook of bioethanol: production and utilization. Taylor and Francis, Washington

    Google Scholar 

  • Yan L, Shuzo T (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  Google Scholar 

Download references

Acknowlegments

We are grateful to Shreekant Pawar and Dr. Yogesh S. Shouche for helping us with the identification of the yeast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmita Prabhune.

Additional information

The authors Aparna Hande and Siddharth Mahajan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hande, A., Mahajan, S. & Prabhune, A. Evaluation of ethanol production by a new isolate of yeast during fermentation in synthetic medium and sugarcane bagasse hemicellulosic hydrolysate. Ann Microbiol 63, 63–70 (2013). https://doi.org/10.1007/s13213-012-0445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0445-4

Keywords

Navigation