Skip to main content
Log in

Microbial synthesis of antimony sulfide nanoparticles and their characterization

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

During recent years, biological synthesis of nanoparticles by microorganisms has been receiving increasing attention. In this investigation, an antimony-transforming bacterium was isolated from the Caspian Sea in northern Iran and was used for intracellular biosynthesis of antimony sulfide nanoparticles. This isolate was identified as non-pigmented Serratia marcescens using conventional identification assays and the 16S rDNA fragment amplification method, and was used to prepare inorganic antimony nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and extracted using two sequential solvent extraction systems. Different characterizations of the extracted inorganic nanoparticles such as particle shape, size and composition were carried out with different instruments. The energy-dispersive x-ray demonstrated that the extracted nanoparticles consisted of antimony and sulfur atoms. In addition, the transmission electron micrograph showed the small and regular non-aggregated nanoparticles ranging in size less than 35 nm. Although the chemical synthesis of antimony sulfide nanoparticles has been reported in the literature, the biological synthesis of antimony sulfide nanoparticles has not previously been published. This is the first report to demonstrate a biological method for synthesizing inorganic nanoparticles composed of antimony. A simple extraction method for isolation of antimony sulfide nanoparticles from bacterial biomass is also reported in the current investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arwidsson Z, Allard B (2010) Remediation of metal-contaminated soil by organic metabolites from fungi IImetal redistribution. Water Air Soil Pollut 207:5–18

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B: Biointerfaces 68:88–92

    Article  CAS  Google Scholar 

  • Bergey DH, Holt JG, Krieg NR (1994) Bergey's manual of determinative bacteriology. . Section 5. Facultatively anaerobic gram-negative rods. family Enterobacteriaceae. Williams & Wilkins, USA, pp 477–484.

  • Berman JD (1997) Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24:684–703

    Article  PubMed  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  PubMed  CAS  Google Scholar 

  • Feng R, Wei C, Tu S, Tang S, Wu F (2011) Simultaneous hyperaccumulation of arsenic and antimony in cretan brake fern: evidence of plant uptake and subcellular distributions. Microchem J 97:38–43

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Chen YW (2002a) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci Rev 57:125–176

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Chen YW (2002b) Antimony in the environment: a review focused on natural waters: II. relevant solution chemistry. Earth Sci Rev 59:265–285

    Article  CAS  Google Scholar 

  • Godosikova E, Takacs L, Balaz P, Kovac J, Satka A, Briancin J (2008) Mechanochemical reduction of antimony sulphide Sb2S3 with magnesium in a planetary mill. Rev Adv Mater Sci 18:212–215

    Google Scholar 

  • González MJG, Renedo MOD, Martínez JA (2005) Simultaneous determination of antimony(III) and antimony(V) by UV–vis spectroscopy and partial least squares method (PLS). Talanta 68:67–71

    Article  PubMed  Google Scholar 

  • Grigorescu CEA, Stradling RA (2001) Antimony-based infrared materials and devices. Thin Films 28:147–191

    Article  CAS  Google Scholar 

  • Haldar Ak, Sen P, Roy S (2011) Use of antimony in the treatment of leishmaniasis. current status and future directions. Mol Biol Int doi:10.4061/571242

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Part A 67:1003–1006

    Article  CAS  Google Scholar 

  • Isago H, Miura K, Oyama Y (2008) Synthesis and properties of a highly soluble dihydoxo (tetra-tert-butylphthalocyaninato) antimony(V) complex as a precursor toward water-soluble phthalocyanines. J Inorg Biochem 102:380–387

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K, Kulkarni AR (2009a) Plant system: nature's nanofactory. Colloids Surf B: Biointerfaces 73(2):219–223

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009c) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71:226–229

    Article  CAS  Google Scholar 

  • Johnson CA, Moench H, Wersin P, Kugler P, Wenger C (2005) Solubility of antimony and other elements in samples taken from shooting ranges. J Environ Qual 34:248–254

    PubMed  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silvernanoparticles synthesized by a marine fungus Penicillum fellutanum isolated fromcoastal mangrove sediment, Colloids Surfaces B: Biointerfaces 71:133–137

    Google Scholar 

  • Lecureur V, Lagadic-Gossmann D, Fardel O (2002) Potassium antimonyl tartrate induces reactive oxygen species-related apoptosis in human myeloid leukemic HL60 cells. Int J Oncol 20:1071–1076

    PubMed  CAS  Google Scholar 

  • Li WC, Wong MH (2010) Effects of bacteria on metal bioavailability, speciation and mobility in different metal mine soils: a column study. J Soils Sediments 10:313–325

    Article  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Niedzielski P, Siepak M (2003) Analytical methods for determining arsenic, antimony and selenium in environmental samples. Pol J Environ Stud 12:653–667

    CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  PubMed  CAS  Google Scholar 

  • Ozimina D (2002) Research on the mechanism and activity of antimony thioantimonate in tribological systems. Tribol Lett 13:111–117

    Article  CAS  Google Scholar 

  • Petit de Penã Y, Vielma O, Burguera JL, Burguera M, Rondón C, Carrero P (2001) On-line determination of antimony(III) and antimony(V) in liver tissue and whole blood by flow injection – hydride generation – atomic absorption spectrometry. Talanta 55:743–754

    Article  PubMed  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YSC (2009) innamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surfaces B: Biointerfaces 73(2):332–338

    Article  CAS  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171

    Article  CAS  Google Scholar 

  • Shakibaei M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010a) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 56:7–15

    Article  Google Scholar 

  • Shakibaei M, Forootanfar H, Mollazadeh-Moghaddam K, Bagherzadeh Z, Nafissi-Varcheh N, Shahverdi AR, Faramarzi MA (2010b) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 2:71–75

    Article  Google Scholar 

  • Smichowski P (2008) Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols. Talanta 75:2–14

    Article  PubMed  CAS  Google Scholar 

  • Steely S, Amarasiriwardena D, Xing B (2007) An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Environ Pollut 148:590–598

    Article  PubMed  CAS  Google Scholar 

  • Svehla G (1996) VOGEl’s qualitative inorganic analysis. Chapter3: reactions of the cations. Longman, London, pp 99–104

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S (2009) Nanosilver—the burgeoning therapeutic molecule and its green synthesis. Biotechnol Adv 27:924–937

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Gin A, Razeghi M (2006) Quantum photovoltaic devices based on antimony compound semiconductors. Physics Astronomy 118:515–545

    CAS  Google Scholar 

  • Weissfeld AS, Sahm DF, Forbes BA (1998) Bailey & Scott's diagnostic microbiology (Mosby) part4: bacteriology, section2: gram-negative bacilli and coccobacilli (MacConkey-positive,Oxidase-negative) chapter 37: Enterobacteriaceae. Mosby, London, pp 516–522.

Download references

Acknowledgments

This work was supported by a grant (No: 7178) from Tehran University of Medical Sciences. We also thank K. Mollazadeh Moghaddam for his assistance in the collection of samples from northern Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Shahverdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahrami, K., Nazari, P., Sepehrizadeh, Z. et al. Microbial synthesis of antimony sulfide nanoparticles and their characterization. Ann Microbiol 62, 1419–1425 (2012). https://doi.org/10.1007/s13213-011-0392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0392-5

Keywords

Navigation