Skip to main content

Advertisement

Log in

Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The Rhizobium-legume symbiosis is a complex partnership with many factors, with initial bacterial colonization of the plant root surface and primary infection as key early stages. Two molecules are strongly involved in these processes: the structural carbohydrate cellulose and the enzyme cellulase, which breaks down the former and allows rhizobia to infect the roots. Here, we report the effect on common bean (Phaseolus vulgaris L.) after co-inoculation of the non-nodulating, cellulase-overproducing strain Rhizobium cellulosilyticum ALA10B2T and the P. vulgaris-nodulating R. leguminosarum strain TPV08. In order to elucidate the effect of combined inoculation with both strains, we designed greenhouse assays, including single inoculation with strain TPV08, co-inoculation with both strains and an uninoculated treatment in non-sterile peat. Chemical fertilizers were not added. Chlorophyll content in the leaves was measured after the flowering stage by spectrophotometry and was considered to be indicative of the nutrient status of the plants. Nodule formation was observed on roots of the inoculated plants, while no nodulation was observed on roots of the uninoculated plants. The results indicate a synergistic effect between the two Rhizobium strains. Co-inoculated plants exhibited significant increases in seed yield and nitrogen content in comparison with the uninoculated control plants and with plants inoculated with a single strain. It is suggested that co-inoculation with strain ALA10B2T greatly increased the efficiency of N fixation by strain TPV08.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ SCI 26:1–20

    Article  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N-fixation (15 N) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2009) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  Google Scholar 

  • Chihaoui SA, Trabelsi D, Jdey A, Mhadhbi H (2015) Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Arch Microbiol. doi:10.1007/s00203-015-1118-z

    PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microb 71(9):4951–4959

    Article  CAS  Google Scholar 

  • Davey ME, O′Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microb Mol Biol Rev 64:847–867

    Article  CAS  Google Scholar 

  • Dazzo FB, Truchet GL, Sherwood JE, Hrabak EM, Abe M, Pankratz SH (1984) Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl Environ Microbiol 48:1140–1150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379

    Article  CAS  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza doi. doi:10.1007/s00572-002-0204-7

    Google Scholar 

  • Flores-Felix JD, Ménendez E, Rivera LP, Marcos-García M, Martínez–Hidalgo P, Materos PF, Martínez-Molina E, Velázquez E, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  CAS  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2001) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol. doi:10.1111/j.1469-8137.2007.02191.x

    Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    Article  CAS  PubMed  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF, Velázquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57(4):844–848

    Article  PubMed  Google Scholar 

  • García-Fraile P, Carro L, Robledo M, Ramírez-Bahena M-H, Flores-Félix JD, Fernández MT, Mateos PF, Rivas R, Igual MJ, Martínez-Molina E, Peix A, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5), e38122

    Article  PubMed Central  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401

    PubMed Central  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant Growth Promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Chandra R (2008) Influence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in Lentil. WJAS 4(3):297–301

    Google Scholar 

  • Labbé JL, Weston DJ, Dunkirk N, Pelletier DA, Tuskan GA (2014) Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. Front Plant Sci 5:579

    PubMed Central  PubMed  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Mateos PF, Zurdo-Jimenez JI, Chen A, Squartini AS, Haack SK (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum bv trifolii. Appl Environ Microb 58(6):1816–1822

  • Mateos PF, Baker DL, Philip-Hollingsworth S, Squartini A, Paruffo ADB, Nuti MP, Dazzo FB (1995) Direct in situ identification of cellulose microfribils associated with Rhizobium leguminosarum biovar trifolii attached to the root epidermis of white clover. Can J Microbiol 41(2):202–207

    Article  CAS  Google Scholar 

  • Mfilinge A, Mtei K, Ndakidemi P (2014) Effect of Rhizobium inoculation and supplementation with phosphorus and potassium on growth and total leaf chlorophyll (Chl) content of bush bean Phaseolus vulgaris, L. Agric Sci 105: ID:52336

  • Mia BMA, Shamsuddin ZH, Mahmood M (2012) Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. Afr J Biotechnol 11(16):3758–3765

    Google Scholar 

  • Napoli CA, Dazzo FB, Hubbell DH (1975) Production of cellulose microfibrils by Rhizobium. Appl Microbiol 30:123–131

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of Intracellular pH and Acid Tolerance in Rhizobium meliloti. App Environ Microbiol 55:1870–1876

    Google Scholar 

  • Olivera S, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-vukcevic J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotech Lett 16(1):5919–5926

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2001) Growth promotion of chickpea and barely by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Peix A, Velázquez E, Silva LR, Mateos PF (2010) Key Molecules Involved in Beneficial Process in Rhizobia-Legume Symbiosis. In: Khan MH, Zaidi A, Musarrat J (eds). Microbes for Legume Improvement. 1st edn. Springer Wien, pp 55–80

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7(2):1144–1173

  • Prakamhang J, Tittabutr P, Boonkerd N, Teamtisong K, Uchiumi T, Abe M, Teaumroong N (2015) Proposed interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49

    Article  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550

    Article  CAS  PubMed  Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernández G, García RJL, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of RhizobiumAzospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Requena BN, Jimenez J, Toro M, Barea JM (1997) Interactions between plant-growth- promoting Rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for re-vegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Robledo M, Jimenéz-Zurdo JI, Velázquez E, Trujillo ME, Zurdo-Piñeiro JL, Ramírez- Bahena MH, Ramos B, Díaz-Mínguez JM, Dazzo F, Martínez-Molina E, Mateos PF (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc Nat Acad Sci 105:7064–7069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robledo M, Jimenéz-Zurdo JI, Soto MJ, Velázquez E, Dazzo F, Martínez-Molina E, Mateos PF (2011) Development of functional symbiotic white clover root Harris and nodules requires tightly regulated production of rhizobial cellulase CelC2. Mol Plant Microb Interact 7(24):798–807

    Article  Google Scholar 

  • Robledo M, Rivera L, Jimenéz-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Martínez-Molina E, Hirsch MA, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125

    Article  CAS  PubMed  Google Scholar 

  • Sara S, Morad M, Reza CM (2013) Effects of seed inoculation by Rhizobium strains on chlorophyll content and protein percentage in common bean cultivars (Phaseolus vulgaris L.). Int J Biosci 3:1–8

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung vean (Vigna radiata L.). Lett Appl Microbiol. doi:10.1111/j.1472-765X.2005.01827.x

    PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci. doi:10.1111/j.1365-2389.2005.00771.x

    Google Scholar 

  • Vincent JM (1970) The cultivation, isolation and maintenance of rhizobia. In: Vicent JM (ed) A manual for the practical study of root-nodule, 1st edn. Blackwell Scientific Publications, Oxford, pp 1–13

    Google Scholar 

  • Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GE, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proc Nat Acad Sci 109:633–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadegari M, Rahmani HA (2010) Evaluation of bean (Phaseolus vulgaris) seeds’ inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria (PGPR) on yield and yield components. African J Agric Res 5:792–799

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol R 62:968–989

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Government project AGL2011-29227. Alexandra Díez-Méndez was supported by a PhD fellowship from Junta de Castilla y León (Regional Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro F. Mateos.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Qualitative assays of cellulose (A) and cellulase (B) production. Cellulose production was detected using Congo Red staining, and CMCase activity by double-layer plate assays after inoculation with 10 μL of each strain. 1. R. rhizogenes ATCC11325T, 2. R. cellulosilyticum ALA10B2T, 3. R. leguminosarum bv phaseoli TPV08, 4. R. pisi DSM30132T, 5. R. jaguaris CCGE2052T, 6. R. radiobacter ATCC19358T, 7. R. multihospitium LMG3946T, 8. R. vignae LMG25447T, 9. R. endophyticum CCGE525T, 10. R. selenitireducens LMG24075T, 11. R. leguminosarum ATCC10004T, 12. R. indigoferae CCBAU710492T. (GIF 51 kb)

High Resolution Image (TIF 1466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diez-Mendez, A., Menéndez, E., García-Fraile, P. et al. Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 67, 135–141 (2015). https://doi.org/10.1007/s13199-015-0372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0372-9

Keywords

Navigation