Skip to main content
Log in

Optical biosensors for food quality and safety assurance—a review

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Food quality and safety is a scientific discipline describing handling, preparation and storage of food in ways that prevent food borne illness. Food serves as a growth medium for microorganisms that can be pathogenic or cause food spoilage. Therefore, it is imperative to have stringent laws and standards for the preparation, packaging and transportation of food. The conventional methods for detection of food contamination based on culturing, colony counting, chromatography and immunoassay are tedious and time consuming while biosensors have overcome some of these disadvantages. There is growing interest in biosensors due to high specificity, convenience and quick response. Optical biosensors show greater potential for the detection of pathogens, pesticide and drug residues, hygiene monitoring, heavy metals and other toxic substances in the food to check whether it is safe for consumption or not. This review focuses on optical biosensors, the recent developments in the associated instrumentation with emphasis on fiber optic and surface plasmon resonance (SPR) based biosensors for detecting a range of analytes in food samples, the major advantages and challenges associated with optical biosensors. It also briefly covers the different methods employed for the immobilization of bio-molecules used in developing biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah AJ, Heng MLY, Karuppiah N, Sidek H (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors 7:2238–2250

    Article  CAS  Google Scholar 

  • Akdoğan E, Mutlu M (2011) Basic principles of optical biosensors in food engineering. In: Mutlu M (ed) Biosensors in food processing, safety and quality control. CRC, Boca Raton, pp 53–70

    Google Scholar 

  • Alocilja EC, Radke SM (2003) Market analysis of biosensors for food safety. Biosens Bioelectron 18:841–84

    Article  CAS  Google Scholar 

  • Alpat S, Alpat KS, Çadırcı BH, Yaşa I, Telefoncu A (2008) A novel microbial biosensor based on Circinella sp. modified carbon paste electrode and its voltammetric application. Sens Actuators B: Chem 134:175–181

    Article  CAS  Google Scholar 

  • Alquasaimeh MS, Heng LY, Ahmad M (2007) A urea biosensor from stacked sol-gel films with immobilized nile blue chromoionophore and urease enzyme. Sensors 7(10):2251–2262

    Article  Google Scholar 

  • Anderson GP, Nerurkar NL (2002) Improved fluoroimmunoassays using the dye Alexa flour 647 with the RAPTOR, a fiber optic biosensor. J Immun Mthds 271:17–24

    Article  CAS  Google Scholar 

  • Andreou VG, Clonis YD (2002) A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol–gel entrapped bromcresol purple for in-field use. Biosens Bioelectron 17(1–2):61–69

    Article  CAS  Google Scholar 

  • Arduini F, Ricci F, Tuta C.S, Moscone D, Amine A, Palleschi G (2006) Anal Chim Acta 580:155–162

    Google Scholar 

  • Arora K, Chand S, Malhotra BD (2006) Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta 568:259–274

    Article  CAS  Google Scholar 

  • Bautista DA, Mcintire L, Laeye L, Griffiths MW (1992) The application of ATP bioluminescence for the assessment of milk quality and factory hygiene. J Rapid Meth Automat Microbiol 1(3):179–193

    Article  Google Scholar 

  • Bautista DA, Vaillancourt JP, Clarke RA, Renwick S, Griffiths MW (1995) Rapid assessment of the microbiological quality of poultry carcasses using ATP bioluminescence. J Food Protect 58(5):551–554

    Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    Article  CAS  Google Scholar 

  • Bellis S, Jackson JC, Mathewson A (2006) Towards a disposable in vivo miniature implantable fluorescence detector, Proc. SPIE 6083, 60830N (2006); doi:10.1117/12.646268.

  • Bhunia AK (2008) Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv Food Nutr Res 54:1–44

    Article  CAS  Google Scholar 

  • Bhunia AK (2011) Rapid Pathogen Screening Tools For Food Safety. Food Tech 65(2) URL: http://www.ift.org/food-technology/past-issues/2011/february/features/rapid-pathogen-screening-tools-for-food-safety.aspx (sighted on 27 February 2011)

  • Bhunia AK, Banada P, Banerjee P, Valadez A, Hirleman D (2007) Light scattering, fiber optic- and cell-based sensors for sensitive detection of foodborne pathogens. J Rapid Meth Automat Microbiol 15:121–145

    Article  Google Scholar 

  • Blum LJ, Gautier SM, Coulet PR (1991) Fibre optic biosensors with immobilized bioluminescence enzymes. J Mater Sci Mater Med 2(4):202–204

    Article  CAS  Google Scholar 

  • Bondarenko G, Buzhan P, Dolgoshein B, Golovin V, Guschin E, Ilyin A, Kaplin V, Karakash A, Klanner R, Pokachalov V, Popova E, Smirnov K (2001) Limited Geiger-mode microcell silicon photodiode: new results. Nucl Instrum Meth A 442:187–192

    Article  Google Scholar 

  • Bosch ME, Sanchez AJR, Rojas FS, Ojeda CB (2007) Recent development in optical fiber biosensors. Sensors 7:797–859

    Article  CAS  Google Scholar 

  • Brynda E, Homola JP, Houska M, Pfeifer P, Skvor J (1999) Antibody networks for surface plasmon resonance immunosensors. Sens Actuators B: Chem 54(1–2):132–136

    Article  Google Scholar 

  • Centre for Bioelctronics and Biosensors (2011) Home page of laboratory. URL:http://www.biodesign.asu.edu/research/research-centers/bioelectronics-and-biosensors (Sighted on 6 June 2011)

  • Chen Z, Kaplan DL, Gao H, Kumar J, Marx KA, Tripathy SK (1996) Molecular assembly of multilayer enzyme: toward the development of chemiluminescence- based fiber optic biosensor. Mater Sci Eng 4:155–159

    Article  CAS  Google Scholar 

  • Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  CAS  Google Scholar 

  • Corres JM, Matias IR, Bravo J, Arregui FJ (2008) Tapered optical fibers biosensor for the detection of anti-gliadin antibodies. Sens Actuators B: Chem 135(1):166–171

    Article  CAS  Google Scholar 

  • Daniela R, Almoga R, Rona A, Belkinb S, Diamand YS (2008) Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode. Biosens Bioelectron 24:888–893

    Article  CAS  Google Scholar 

  • del Busto-Ramos M, Budzik M, Corvalan C, Morgan M, Turco R, Nivens D, Applegate B (2008) Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy. Appl Microbiol Biotechnol 78:573–580

    Article  CAS  Google Scholar 

  • Demarco DR, Lim DV (2002) Detection of escherichia coli O157:H7 in 10 and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. J Food Protect 65:596–602

    Google Scholar 

  • Demarco DR, Saaski W, Mccrae DA, Lim D (1999) Rapid detection of Escherichia coli O157:H7 in ground beef using a fiber-optic biosensor. J Food Protect 62(7):711–716

    CAS  Google Scholar 

  • Devanathan S, Salamon Z, Nagar A, Narang S, Schleich D, Darman P, Hruby V, Tollin G (2005) Subpicomolar sensing of delta-opioid receptor ligands by molecular-imprinted polymers using plasmon-waveguide resonance spectroscopy. Anal Chem 77(8):2569–2574

    Article  CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353

    Article  Google Scholar 

  • Dudak FC, Boyac IH (2007) Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Res Int 40(7):803–807

    Article  CAS  Google Scholar 

  • Eroshin VK, Satroutdinov AD, Minkevich IG, Dedyukhina EG, Chistyakova TI, Reshetilov AN (2002) Kinetic characteristics of metal–EDTA degradation by immobilized cells of bacterial strain DSM 9103. ProBiochem 38(2):151–154

    CAS  Google Scholar 

  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  Google Scholar 

  • Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7:2316–2329

    Article  CAS  Google Scholar 

  • Farré M, Martínez E, Ramón J, Navarro A, Radjenovic J, Mauriz E, Lechuga L, Marco MP, Barceló D (2007) Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Anal Bioanal Chem 388:207–214

    Article  CAS  Google Scholar 

  • Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwin H, Stead S, Sharman M (2005) Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal Chim Act 529(1–2):109–113

    Article  CAS  Google Scholar 

  • Fur-Chi C, Sandria GL (2006) Comparison of a rapid ATP bioluminescence assay and standard plate count methods for assessing microbial contamination of consumers’ refrigerators. J Food Prot 69(10):2534–2538

    Google Scholar 

  • Gambari R, Feriotto G (2006) Surface plasmon resonance for detection of genetically modified organisms in the food supply. J AOAC Intl 89(3):893–897

    CAS  Google Scholar 

  • Geng T, Uknalis J, Tu SI, Bhunia AK (2006) Fiber optic biosensor employing Alexa- Fluor conjugated antibody for detection of Escheria coli O157:H7 from ground beef in four hours. Sensors 6:796–807

    Article  CAS  Google Scholar 

  • Gerlach JQ, Cunningham S, Kane M, Joshi L (2010) Glycobiomimics and glycobiosensors. Biochem Soc Trans 38(5):1333–1336

    Article  CAS  Google Scholar 

  • Golden JP, Ligler FS (2002) A comparison of imaging methods for use in an array biosensor. Biosen Bioel 17:719–725

    Article  CAS  Google Scholar 

  • Golovin V, Saveliev V (2004) Novel type of avalanche photodetector with Geiger mode operation. Nucl Inst Meth Phys Res Sect 518:560–564

    Article  CAS  Google Scholar 

  • Guo J, Keathley P, Hastings J (2008) Dual-mode surface-plasmon-resonance sensors using angular interrogation. Opt Lett 33:512–514

    Article  Google Scholar 

  • Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24(5):333–342

    Article  CAS  Google Scholar 

  • Haughey SA, Baxter GA (2006) Biosensor screening for veterinary drug residues in foodstuffs. J AOAC Int 89(3):862–867

    CAS  Google Scholar 

  • Haus J (2009) Optical sensors: basics and applications. Wiley-VCH, Wenheim

    Google Scholar 

  • Hawronskyj J-M, Adams MR, Kyriakides AL (1993) Rapid detection of antibiotics in raw milk by ATP bioluminescence. Intl J Dairy Technol 46(1):31–33

    Article  CAS  Google Scholar 

  • Ho HP, Law WC, Wu SY, Liu XH, Wong SP, Lin C, Kong SK (2006) Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sens Actuators B: Chem 114(1):80–84

    Article  CAS  Google Scholar 

  • Hobson NS, Tothill I, Turner APF (1996) Microbial detection. Biosen Bioelectron 11(5):455–477

    Article  CAS  Google Scholar 

  • Hodnik V, Anderluh G (2009) Toxin detection by surface plasmon resonance. Sensors 9:1339–1354

    Article  CAS  Google Scholar 

  • Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  • Horsburgh AM, Mardlin DP, Turner NL, Henkler R, Strachan N, Glover LA, Paton GI, Killham K (2002) On-line microbial biosensing and fingerprinting of water pollutants. Biosens Bioelectron 17(6–7):495–501

    Article  CAS  Google Scholar 

  • Ito K, Nishimura K, Murakamib S, Arakawa H, Maedaa M (2000) Novel bioluminescent assay of pyruvate phosphate dikinase using firefly luciferase–luciferin reaction and its application to bioluminescent enzyme immunoassay. Anal Chim Act 421:113–120

    Article  CAS  Google Scholar 

  • Jönsson U, Fägerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Löfås S, Persson B, Roos H, Rönnberg I, Sjölander S, Stenberg E, Ståhlberg R, Urbaniczky C, Östlin H, Malmqvist M (1991) Real-time biospecific interaction analysis using surface- plasmon resonance and a sensor chip technology. Biotechniques 11:620–627

    Google Scholar 

  • Kaur J, Singh KV, Schmid AH, Varshney GC, Suri CR, Raje M (2004) Atomic force spectroscopy-based study of antibody pesticide interactions for characterization of immunosensor surface. Biosens Bioelectron 20(2):284–293

    Article  CAS  Google Scholar 

  • Krishnamoorthy G, Carlen ET, de Boer HL, van den Berg A, Schasfoort RBM (2010) Electrokinetic lab-on-a-biochip for multi-ligand/multi-analyte biosensing. Anal Chem 82:4145–4150

    Article  CAS  Google Scholar 

  • Kudo H, Sawai M, Wang X, Gessei T, Koshida T, Miyajima K, Saito H, Mitsubayashi K (2009) A NADH-dependent fiber-optic biosensor for ethanol determination with a UV-LED excitation system. Sens Actuators B: Chem 141(1):20–25

    Article  CAS  Google Scholar 

  • Kumar J, Jha SK, D’Souza SF (2006) Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens Bioelectron 21:2100–2105

    Article  CAS  Google Scholar 

  • Lan YB, Wang SZ, Yin YG, Hoffmann WC, Zheng XZ (2008) Using a surface plasmon resonance biosensor for rapid detection of Salmonella Typhimurium in chicken carcass. J Bionic Eng 5(3):239–246

    Article  Google Scholar 

  • Lazcka O, Del Campo JF, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568(1–2):200–210

    Article  CAS  Google Scholar 

  • Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, Kennedy RO (2003) Advances in biosensors for detection of pathogens in food and water. Enz Micro Tech 32(1):3–13

    Article  CAS  Google Scholar 

  • Leung A, Shankar PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sensors Actuat B: Chem 125(2):688–703

    Article  CAS  Google Scholar 

  • Li S, Li Y, Chen H, Horikawa S, Shen W, Simonian A, Chin BA (2010) Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens Bioelectron 26:1313–1319

    Article  CAS  Google Scholar 

  • Lin F, Sweeney MM, Sheehan MM, Mathewson A (2005) A protein biosensor using Geiger mode avalanche photodiodes. J Phy: Conf Ser 10:333–336

    Article  CAS  Google Scholar 

  • Lin HY, Tsao YC, Tsai WH, Yang YW, Yan TR, Sheu BC (2007) Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED. Sens Actuators B: Chem 138(2):299–305

    Article  CAS  Google Scholar 

  • Lin C, Chen H, Yu C, Lu P, Hsieh C, Hsieh B, Chang Y, Chou C (2009) Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber optic biosensor. Anal Biochem 385:224–228

    Article  CAS  Google Scholar 

  • Long F, He M, Zhu A, Song B, Sheng J, Shi H (2010) Compact quantitative optic fiber-based immunoarray biosensor for rapid detection of small analytes. Biosens Bioelectron 26(1):16–22

    Article  CAS  Google Scholar 

  • Marazuela M, Moreno-Bondi M (2002) Fiber-optic biosensors - an overview. Anal Bioanal Chem 372:664–682

    Article  CAS  Google Scholar 

  • Marquette CA, Degiuli A, Blum LJ (2000) Fiberoptic biosensors based on chemiluminescent reactions. App Biochem Biotechnol 89:107–115

    Article  CAS  Google Scholar 

  • Mauriz E, Calle A, Montoya A, Lechuga LM (2006) Determination of environmental organic pollutants with a portable optical immunosensor. Talanta 69(2):359–364

    Article  CAS  Google Scholar 

  • McGrath T, Baxter A, Ferguson J, Haughey S, Bjurling P (2005) Multi sulfonamide screening in porcine muscle using a surface plasmon resonance biosensor. Anal Chim Act 529(1–2):123–127

    Article  CAS  Google Scholar 

  • Mehrvar M, Anderson WA, Young MM (2000) Photocatalytic degradation of aqueous tetrahydrofuran, 1,4-dioxane and their mixture with TiO2. Intl J Photoenergy 2:67–80

    Article  CAS  Google Scholar 

  • Monk D, Walt DR (2004) Optical fiber-based biosensors. Anal Bioanal Chem 379:931–945

    Article  CAS  Google Scholar 

  • Nanduri V, Kim G, Morgan MT, Ess D, Hahm B-K, Kothapalli A, Valdez A, Geng T, Bhunia AK (2006) Antibody immobilization on waveguides using a flow–through system shows improved Listeria monocytogenes detection in an automated fiber optic biosensor: RAPTOR. Sensors 6:808–822

    Article  CAS  Google Scholar 

  • Narang U, Anderson GP, Ligler FS, Burans J (1997) Fiber optic-based biosensor for ricin. Biosens Bioelectron 12(9–10):937–945

    Article  CAS  Google Scholar 

  • Narsaiah K, Jha SN (2011) Nondestructive methods for quality evaluation of livestock products. J Food Sci Technol. doi:10.1007/s13197-011-0286-3

  • Nichols WW, Curtis GDW, Johnston HH (1981) Choice of buffer anion for the assay of adenosine 5′-triphosphate using firefly luciferase. Anal Biochem 114(2):396–397

    Article  CAS  Google Scholar 

  • Nielen MWF, Lasaroms JJP, Essers ML, Oosterink JE, Meijer T, Sanders MB, Zuidema T, Stolker AAM (2008) Multiresidue analysis of beta-agonists in bovine and porcine urine, feed and hair using liquid chromatography electrospray ionisation tandem mass spectrometry. Anal Bioanal Chem 391(1):1618–2652

    Article  CAS  Google Scholar 

  • Ocean Optics (2011) www.oceanoptics.com (sighted on 6 June 2011)

  • Orellana G, Haigh D (2008) New trends in fiber-optic chemical and biological sensors. Curr Anal Chem 4:273–295

    Article  CAS  Google Scholar 

  • Park IS, Kim N (2006) Development of a chemiluminescent immunosensor for chloramphenicol. Anal Chim Act 578(1):19–24

    Article  CAS  Google Scholar 

  • Park M, Jose J, Pyun J (2011) SPR biosensor by using E. coli outer membrane layer with autodisplayed Z-domains. Sens Actuat B - Chem 154:82–88

    Article  CAS  Google Scholar 

  • Peeters S, Stakenborg T, Reekmans G, Laureyn W, Lagae L, Aerschot AV, Ranst MV (2008) Impact of spacers on the hybridization efficiency of mixed self-assembled DNA/alkanethiol films. Biosens Bioelectron 24(1):72–77

    Article  CAS  Google Scholar 

  • Peña-Vázquez E, Maneiro E, Pérez-Conde C, Moreno-Bondi MC, Costas E (2009) Microalgae fiber optic biosensors for herbicide monitoring using sol–gel technolog. Biosen Bioel 24(12):3538–3543

    Article  CAS  Google Scholar 

  • Petrosova A, Konry T, Cosnier S, Trakht I, Lutwama J, Rwaguma E, Chepurnov A, Mühlberger E, Lobel L, Marks RS (2007) Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. Sens Actuators B: Chem 122(2):578–586

    Article  CAS  Google Scholar 

  • Philp JC, Balmand S, Hajto E, Bailey MJ, Wiles S, Whiteley AS, Lilley AK, Hajto J, Dunbar SA (2003) Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Anal Chim Act 487(1):61–74

    Article  CAS  Google Scholar 

  • Piunno PAE, Watterson P, Wust CC, Krull UJ (1999) Considerations for the quantitative transduction of hybridization of immobilized DNA. Anal Chem Act 400(1–3):73–89

    Article  CAS  Google Scholar 

  • Pollet J, Delport F, Janssen KPF, Tran DT, Wouters J, Verbiest T, Lammertyn J (2011) Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 83:1436–1441

    Article  CAS  Google Scholar 

  • Pourima B, Pougnard C, Josson C, Le Baron P, Pringuez E, Drocourt JL, Cabanes PA, Legastelois S (2002) Immuno-magnetic separation followed by solid-phase cytometry for the rapid detection and enumeration of pathogens in surface water. Euro Cells Mat 3(2):45–47

    Google Scholar 

  • Prakash O, Talat M, Hasan SH, Pandey RK (2008) Enzymatic detection of mercuric ions in ground-water from vegetable wastes by immobilizing pumpkin (Cucumis melo) urease in calcium alginate beads. Biores Technol 99(10):4524–4528

    Article  CAS  Google Scholar 

  • Prasad PN (2003) Introduction to biophotonics. Wiley, New Jersey

    Book  Google Scholar 

  • Rajan, Rajan S, Gupta BD (2007) Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sens Actuators B: Chem 123(2):661–666

    Article  CAS  Google Scholar 

  • Rasooly A, Herold KE (2006) Biosensors for the analysis of food and water borne pathogens and their toxins. J AOAC Int 89(3):873–883

    CAS  Google Scholar 

  • Raz SR, Bremer MGEG, Giesbers M, Norde W (2008) Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance. Biosens Bioelectron 24(4):552–557

    Article  CAS  Google Scholar 

  • Reig M, Toldra F (2008) Veterinary drug residues in meat: concerns and rapid methods for detection. Meat Sci 78:60–67

    Article  CAS  Google Scholar 

  • Rhines TD, Arnold MA (1989) Fiber-optic biosensor for urea based on sensing of ammonia gas. Anal Chim Act 227(22):387–396

    Article  CAS  Google Scholar 

  • Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Act 605(2):111–129

    Article  CAS  Google Scholar 

  • Rich RL, Myszka DG (2010) Grading the commercial optical biosensor literature—Class of 2008: ‘The Mighty Binders’. J Mol Recognit 23:1–64

    Article  CAS  Google Scholar 

  • Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    Article  CAS  Google Scholar 

  • Roda A, Mezzanotte L, Aldini R, Nichelini E, Cevenini L (2010) Neurogastroenterol Motil 22:1117–1288

    Article  CAS  Google Scholar 

  • Roda A, Cevenini L, Michelini E, Branchini BR (2011) A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron 26:3647–3653

    Article  CAS  Google Scholar 

  • Roepcke CBS, Muench SB, Schulze H, Bachmann TT, Schmid RD, Hauer B (2011) Tailoring biosensors for Brazil: detection of insecticides in foods. Food Control 22:1061–1071

    Article  CAS  Google Scholar 

  • Rowe CA, Tender LM, Feldstein MJ, Golden JP, Scruggs SD, Cras JJ, Ligler FS (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal Chem 71:3846–3852

    Article  CAS  Google Scholar 

  • Ryumae U, Hibi K, Yoshiura Y, Ren H, Endo H (2010) Rapid and highly sensitive detection of Flavobacterium psychrophilum using high gradient immunomagnetic separation with flow cytometry. Aquaculture 309:125–130

    Article  Google Scholar 

  • Sadana A, Sadana N (2011) Handbook of biosensors and biosensor kinetics. Elsevier B.V, Amsterdam

    Google Scholar 

  • Sapsford KE, Taitt CR, Loo N, Ligler FS (2005) Biosensor detection of botulinum toxoid A and Staphylococcal enterotoxin B in food. Appl Environ Microbial 71:5590–5592

    Article  CAS  Google Scholar 

  • Saveliev V (2004) The recent development and study of silicon photomultiplier. Nucl Inst Meth Phys Res Sect A 518:560–564

    Article  CAS  Google Scholar 

  • Saveliev V, Golovin V (2000) Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures. Nucl Inst Meth Phys Res Sect 442(1–3):223–229

    Article  CAS  Google Scholar 

  • Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, Jellison GE (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol 16(8):332–338(7)

    Google Scholar 

  • Siragusa GR, Cutter CN (1995) Microbial ATP bioluminescence as a means to detect contamination on artificially contaminated beef carcass tissue. J Food Protect 58(7):764–769

    CAS  Google Scholar 

  • Situ C, Mooney MH, Elliott CT, Buijs J (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. TrAC Trends Anal Chem 29:1305–1315

    Article  CAS  Google Scholar 

  • Spadavecchia J, Manera MG, Quaranta F, Siciliano P, Rella R (2005) Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens Bioelectron 21(6):894–900

    Article  CAS  Google Scholar 

  • Squirrel DJ, Price RL, Murphy MJ (2002) Rapid and specific detection of bacteria using bioluminescence. Anal Chim Act 457:109–114

    Article  Google Scholar 

  • Stender H, Sage A, Oliveira K, Broomer AJ, Young B, Coull J (2001) Combination of ATP-bioluminescence and PNA probes allows rapid total counts and identification of specific microorganisms in mixed populations. J Microbio Methods 46:69–75

    Article  CAS  Google Scholar 

  • Subramanian A, Irudayaraj J, Ryan T (2006) Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of Staphylococcus aureus. Sens Actuators B: Chem 114(1):192–198

    Article  CAS  Google Scholar 

  • Sujith Kumar PV, Basheer S, Ravi R, Thakur MS (2011) Comparative assessment of tea quality by various analytical and sensory methods with emphasis on tea polyphenols. J Food Sci Technol 48:440–446

    Article  CAS  Google Scholar 

  • Swati M, Hase NK, Srivastava R (2010) Nanoengineered optical urea biosensor for estimating hemodialysis parameters in spent dialysate. Anal Chim Acta 676:68–74

    Article  CAS  Google Scholar 

  • Taitt CR, Golden JP, Shubin YS, Shriver Lake LC, Sapsford KE, Rasooly A, Ligler FS (2004) A portable array biosensor for detecting multiple analysis in complex samples. Microb Ecol 47:175–185

    Article  CAS  Google Scholar 

  • Tanaka S, Kuroda A, Kato J, Ikeda T, Takiguchi N, Ohtake H (2001) A sensitive method for detecting AMP by utilizing polyphosphate-dependent ATP regeneration and bioluminescence reactions. Biochem Eng J l9:193–197

    Article  Google Scholar 

  • Tognalli NG, Scodeller P, Flexer V, Szamocki R, Ricci A, Tagliazucchi M, Calvo EJ, Fainstein A (2009) Redox molecule based SERS sensors. Phys Chem Chem Phys 11(34):7412–7423

    Article  CAS  Google Scholar 

  • Ukuku DO, Gerald GM, William FF (2005) ATP bioluminescence assay for estimation of microbial populations of fresh-cut melon. J Food Prot 68(11):2427–2432

    CAS  Google Scholar 

  • Valat C, Champiat D, N’Guyen TTT, Loiseau G, Raimbault M, Montet D (2003) Use of ATP bioluminescence to determine the bacterial sensitivity threshold to a bacteriocin. Luminescence 18:254–258

    Article  CAS  Google Scholar 

  • Varshney M, Li YB, Nanapanneni R, Johnson MG, Griffis CL (2003) A chemiluminescence biosensor coupled with immunomagnetic separation for rapid detection of Salmonella typhimurium. J Rapid Methods Automat Microbiol 11:111–131

    Article  CAS  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  Google Scholar 

  • Verma N, Kumar S, Kaur H (2010) Fiber optic biosensor for the detection of Cd in milk. J Biosens Bioelectron 1:102. doi:10.4172/2155-6210.1000102

    Article  CAS  Google Scholar 

  • Wan M, Luo P, Jin J, Xing J, Wang Z, Wong STC (2010) Fabrication of localized surface plasmon resonance fiber probes using ionic self-assembled gold nanoparticles. Sensors 10:6477–6487

    Article  CAS  Google Scholar 

  • Wang X, Krull UJ (2002) Tethered thiazole orange intercalating dye for development of fibre-optic nucleic acid biosensors. Anal Chim Acta 470(11):57–70

    CAS  Google Scholar 

  • Webster JJ, Chang JC, Manley ER, Spivey HO, Franklin RL (1980) Buffer effects on ATP analysis by firefly luciferase. Anal Biochem 106(1):7–11

    Article  CAS  Google Scholar 

  • Wu CM, Lin LY (2004) Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance. Biosens Bioelectron 20(4):864–871

    Article  CAS  Google Scholar 

  • Yuan J, Oliver R, Aguilar MI, Wu Y (2008) Surface plasmon resonance assay for chloramphenicol. Anal Chem 80(21):8329–8333

    Article  CAS  Google Scholar 

  • Yuan J, Addo J, Aguilar MI, Wu Y (2009) Surface plasmon resonance assay for chloramphenicol without surface regeneration. Anal Chim Act 390(1):97–99

    CAS  Google Scholar 

  • Zhang Y, Zhang Z, Sun Y, Wei Y (2007) Development of an analytical method for the determination of β2-agonist residues in animal tissues by high-performance liquid chromatography with on-line electrogenerated [Cu(HIO6)2]5–luminol chemiluminescence detection. J Agric Food Chem 55(13):4949–4956

    Article  CAS  Google Scholar 

  • Zhong Z, Fritzsche M, Pieper SB, Wood TK, Lear KL, Dandy DS, Reardon KF (2011) Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples. Biosens Bioelectron 26(5):2407–2412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research through its subproject entitled “Development of non-destructive system for evaluation of microbial and physico-chemical quality parameters of mango” (C1030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Narsaiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narsaiah, K., Jha, S.N., Bhardwaj, R. et al. Optical biosensors for food quality and safety assurance—a review. J Food Sci Technol 49, 383–406 (2012). https://doi.org/10.1007/s13197-011-0437-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0437-6

Keywords

Navigation