Skip to main content
Log in

Fermentative production of ribonucleotides from whey by Kluyveromyces marxianus: effect of temperature and pH

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Ribonucleotides have shown many promising applications in food and pharmaceutical industries. The aim of the present study was to produce ribonucleotides (RNA) by Kluyveromyces marxianus ATCC 8,554 utilizing cheese whey, a dairy industry waste, as a main substrate under batch fermentation conditions. The effects of temperature, pH, aeration rate, agitation and initial cellular concentration were studied simultaneously through factorial design for RNA, biomass production and lactose consumption. The maximum RNA production (28.66 mg/g of dry biomass) was observed at temperature 30°C, pH 5.0 and 1 g/l of initial cellular concentration after 2 h of fermentation. Agitation and aeration rate did not influence on RNA concentration (p > 0.05). Maximum lactose consumption (98.7%) and biomass production (6.0 g/l) was observed after 12 h of incubation. This study proves that cheese whey can be used as an adequate medium for RNA production by K. marxianus under the optimized conditions at industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barba D, Beolchini F, Del Re G, Di Giacomo G, Veglio F (2001) Kinetic analysis of Kluyveromyces lactis fermentation on whey: batch and fed-batch operations. Process Biochem 36:531–536

    Article  CAS  Google Scholar 

  • Belem MAF, Lee BH (1997) Production of RNA derivatives by Kluyveromyces fragilis grown on whey. Food Sci Technol Int 3:437–444

    Article  CAS  Google Scholar 

  • Belem MAF, Lee BH (1999) Fed-batch fermentation to produce oligonucleotides from Kluyveromyces marxianus grown on whey. Process Biochem 34:501–509

    Article  CAS  Google Scholar 

  • Calil NO, Húngaro HM, Ferraz FO, Ferreira AS, Silva SS (2009) Growth of Kluyveromyces marxianus yeasts strains in deproteined whey obtained from dairy industry. In: Mendez-Vilas A (ed) Current research topics in applied microbiology and microbial biotechnology. Seville, USA, pp 442–444

    Google Scholar 

  • Christensen AD, Kadar Z, Oleskowicz-Popiel P, Thomsen MH (2011) Production of bioethanol from organic whey using Kluyveromyces Marxianus. J Ind Microbiol Biotechnol 38:283–289

    Article  CAS  Google Scholar 

  • Florentino ER, Macedo GR, Santos ES, Pereira FM, Santos FN, Silva SF (2005) Caracterização do soro de queijo visando processo de aproveitamento. Hig Aliment 19:30–32

    Google Scholar 

  • Ghaly AE, El-Taweel AA (1995) Effect of micro-aeration on the growth of Candida tropicalis and production of ethanol during batch fermentation of cheese whey. Bioresour Technol 52:203–217

    Article  CAS  Google Scholar 

  • Ghaly AE, Kamal MA (2004) Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res 38:631–644

    Article  CAS  Google Scholar 

  • Ghaly AE, Rushton DG, Mahmoud NS (2007) Potential air and groundwater pollution from continuous high land application of cheese whey. Am J Appl Sci 4:619–627

    Article  CAS  Google Scholar 

  • Groeneveld P, Stouthamer AH, Westerhoff HV (2009) Super life – how and why ‘cell selection’ leads to the fastest-growing eukaryote. FEBS J 276:254–270

    Google Scholar 

  • Guimãraes PMR, Teixeira JA, Domingues L (2010) Fermenation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorization of cheese whey. Biotech Adv 28:375–384

    Article  Google Scholar 

  • Gupte AM, Nair JS (2010) β–galactosidase production and ethanol fermentation from whey using Kluyveromyces marxianus NCIM 3551. J Sci Ind Res 69:855–859

    CAS  Google Scholar 

  • Kim JH, Lee BH, Lee JS (2002) Production of ribonucleotides by autolysis of Hansenula anomala grown on Korean Ginseng steaming effluent. J Biosci Bioeng 93:318–321

    Article  CAS  Google Scholar 

  • Kolaei VSM, Karimzadeh R, Alsadati SAS, Toufighi J (2007) Modeling of single cell protein production from cheese whey using tanks-in-series model. Iran J Biotechnol 5:87–92

    CAS  Google Scholar 

  • Koushki M, Jafari M, Azizi M (2011) Comparison of ethanol production from cheese whey permeate by two yeast strains. J Food Sci Technol. doi:10.1007/s13197-011-0309-0

    Google Scholar 

  • Koutinas AA, Papapostolou H, Dimitrellou D, Kopsahelis N, Katechaki E, Bekatorou A, Bosnea LA (2009) Whey valorisation: A complete and novel technology development for dairy industry starter culture production. Bioresour Technol 100:3734–3739

    Article  CAS  Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 30:1–10

    Google Scholar 

  • Li Y, Shahbazi A (2006) Lactic acid recovery from cheese whey fermetation broth using combined ultrafiltration and nanofiltration membranes. Appl Biochem Biotechnol 132:985–996

    Article  Google Scholar 

  • Longhi LGS, Luvizetto DJ, Ferreira LS, Rech R, Ayub MAZ, Secchi AR (2004) A growth kinetic model of Kluyveromyces marxianus cultures on cheese whey as substrate. J Ind Microbiol Biotechnol 31:35–40

    Article  CAS  Google Scholar 

  • Lukondeh T, Ashbolt NJ, Rogers PL (2005) Fed-batch fermentation for production of Kluyveromyces marxianus FII 510700 cultivated on lactose based medium. J Ind Microbiol Biotechnol 32:284–288

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426

    Article  CAS  Google Scholar 

  • Morr CV (1989) Whey proteins: Manufacture. In: Fox PF (ed) developments in Dairy Chemistry-4: Functional Milk Proteins. Elsevier Appl Sci, New York, pp 245–284

    Google Scholar 

  • Nath A, Dixit M, Bandiya A, Chavda S, Desai AJ (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol. 99:5749–5755

    Article  CAS  Google Scholar 

  • Ozmihci S, Kargi F (2007) Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresour Technol 98:2978–2984

    Article  CAS  Google Scholar 

  • Pinheiro R, Belo I, Mota M (2000) Air pressure effects on biomass yield of two different Kluyveromyces strains. Enzyme Microb Technol 26:756–762

    Article  CAS  Google Scholar 

  • Revillion JP, Brandelli A, Ayub M (2003) Production of yeast extract from whey using Kluyveromyces marxianus. Braz Arch Biol Technol 49:121–127

    Article  Google Scholar 

  • Sansonetti S, Curcio S, Calabrò V, Dorio G (2010) Optimization of ricotta cheese whey (RCW) fermentation by response surface methodology. Bioresour Technol 101:9156–9162

    Article  CAS  Google Scholar 

  • Santiago PA, Marquez LDS, Cardoso VL, Ribeiro EJ (2004) Estudos da produção de beta-galactosidase por fermentação de soro de queijo com Kluyveromyces marxianus. Cienc Tecnol Aliment 24:567–572

    Article  CAS  Google Scholar 

  • Saraiva CB, Mendonça RCS, Pereira DA (2009) Diagnóstico ambiental de um laticínio de pequeno porte. Ver Bras Agroecologia 4:2051–2054

    Google Scholar 

  • Schaller JP, Kuchan MJ, Thomas DL, Cordle CT, Winship TR, Buck RH, Baggs GE, Wheeler JG (2004) Effect of dietary ribonucleotides on infant immune status. Part 1: humoral responses. Pediatr Res 56:883–890

    Article  CAS  Google Scholar 

  • Silva DDV, Felipe MGA, Mancilha IM, Paula FP (2004) Biotechnological production of xylitol from lignocellulosic materials. Biof Eur 8:56–57

    Google Scholar 

  • Ventanas S, Mustonen S, Puolanne E, Tuorila H (2010) Odour and flavour perception in flavoured model systems: Influence of sodium chloride, umami compounds and serving temperature. Food Qual Prefer 21:453–462

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge FAPEMIG (EDT 2700/06) for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Silvério da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Húngaro, H.M., Calil, N.O., Ferreira, A.S. et al. Fermentative production of ribonucleotides from whey by Kluyveromyces marxianus: effect of temperature and pH. J Food Sci Technol 50, 958–964 (2013). https://doi.org/10.1007/s13197-011-0408-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0408-y

Keywords

Navigation