Skip to main content
Log in

Ethylene and its interaction with other hormones in tension wood formation in Leucaena leucocephala (Lam.) de Wit

  • Original Article
  • Published:
Journal of the Indian Academy of Wood Science Aims and scope Submit manuscript

Abstract

The effect of exogenous ethephon and its combination with gibberellic acid (GA3), indole-3-acetic acid (IAA) and benzyl amino purine (BAP) on tension wood formation in the vertically growing shoots of Leucaena leucocephala has been studied using light and scanning electron microscopy (SEM). The application of exogenous ethephon induced tension wood formation. The percentage of tension wood severity in the shoots was directly proportional to the concentration of ethephon applied. SEM studies revealed the replacement of S2 and S3 fibre wall layers with the gelatinous layer (G-layer) in response to high concentration of ethephon. Ethephon exhibited synergistic interaction with GA3 and BAP in tension wood formation. Fibres and vessel elements in tension wood, induced by ethylene and its combination with other hormones showed increase or decrease in their dimensions irrespective of their concentration and combination. The density of rays increased in all the treatments except in the combination of ethephon and IAA. The anatomical data indicate that ethylene plays a major role in tension wood formation and it interacts synergistically with gibberellins and cytokinin. On the other hand, such synergistic interaction was not found between ethephon and IAA in tension wood formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeles FB (1992) Roles and physiological effects of ethylene in plant physiology: dormancy, growth and development. In: Abeles FB, Morgan PW, Saltveit ME (eds) Ethylene in plant biology, 2nd edn. Academic Press, San Diego, pp 120–181

    Chapter  Google Scholar 

  • Achard P, Baghour M, Chapple A, Hedden P, Straeten DVD, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem identity genes. Proc Natl Acad Sci USA 104:6484–6489

    Article  PubMed  CAS  Google Scholar 

  • Akiva A, Fisher JB, Burg SP (1972) Effect of ethylene on cellular differentiation in etiolated Pea seedlings. Am J Bot 59(7):697–705

    Article  Google Scholar 

  • Berlyn GP, Mikshe JP (1976) Botanical microtechnique and cytochemisty. Iowa State University Press, Iowa, pp 97–98

    Google Scholar 

  • Bjorklund S (2007) Plant Hormones in wood formation: a novel insight into the roles of ethylene and gibberellins. Doctoral thesis. Swedish University of Agricultural Sciences, Umea, pp 19–22

    Google Scholar 

  • Blake TJ, Pharis R, Reid DM (1980) Ethylene, gibberellins, auxin and the apical control of branch angle in conifer, Cupressus arizonica. Planta 148:64–68

    Article  CAS  Google Scholar 

  • Clair B, Ruelle J, Beauchene J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. IAWA J 27:329–333

    Google Scholar 

  • Dadswell HE, Wardrop AB (1955) The structure and properties of tension wood. Holzforschung 9:98–104

    Article  Google Scholar 

  • Daniel G, Filonova L, Kallas AM, Teeri T (2006) Morphological and chemical characterization of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: labelling with cellulose-binding module CBM1HjCe17 A and fluorescence and FE-SEM microscopy. Holzforschung 60:618–624

    Article  CAS  Google Scholar 

  • Davies PJ (1995) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones. Kluwer Academic, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  • Du S, Yamamoto F (2007) An overview of the biology of reaction wood formation. J Integr Plant Biol 49(2):131–143

    Article  CAS  Google Scholar 

  • Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T (2008) Gibberellin-induced formation of tension wood in angiosperm. Planta 227:1409–1414

    Article  PubMed  CAS  Google Scholar 

  • Ingemarsson BSM, Eklund L, Eliasson L (1991) Ethylene effect on cambial activity and cell wall formation in hypocotyls of Picea abies seedlings. Physiol Plantarum 82(2):219–224

    Article  CAS  Google Scholar 

  • Janin G, Ory JM, Bucur V (1990) Les fibres du bois de réaction. Absolute Time Pregroove 44:268–375

    CAS  Google Scholar 

  • Jonathan L, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populas. Proc Natl Acad Sci USA 106:5984–5989

    Article  Google Scholar 

  • Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoids. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristic of tension wood and opposite wood in young inclined stem of poplar (Populus euramericana). IAWA J 22(2):133–157

    Google Scholar 

  • Komal SP (2010) Effect of exogenous growth regulators on pattern of vascular differentiation and lignification in young shoot of Leucaena leucocephala. M Sc. Dissertation. Sardar Patel University, Gujarat, pp 36–37

    Google Scholar 

  • Kwon M (2008) Tension wood as a model system to explore the carbon partitioning between lignin and cellulose biosynthesis in woody plants. J Appl Biol Chem 51:83–87

    Article  CAS  Google Scholar 

  • Lafarguette F, Leple JC, Dejardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  • Lev Yadun L, Aloni R (1995) Differentiation of ray system in woody plants. Bot Rev 61:46–64

    Article  Google Scholar 

  • Little CHA, Eklund L (1999) Ethylene in relation to compression wood formation in Abies balsamea shoots. Trees Struct Funct 13:173–177

    Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:293–294

    Article  Google Scholar 

  • Nakamura T, Saotome M, Ishiguro Y, Itoh R, Higurshi S, Hosono M, Ishii Y (1994) The effect of GA3 on weeping of growing shoot of Japanese Cherry, Prunus spachiana. Plant Cell Physiol 35:523–527

    CAS  Google Scholar 

  • Nelson ND, Hills WE (1978) Ethylene and tension wood formation in Eucalyptus gomphocephala. Wood Sci Technol 12:309–315

    Article  CAS  Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) function in gelatinous layers of tension wood fibres in poplar: a glimpse into mechanism of the balancing act of trees. Plant Cell Physiol 48(6):843–855

    Article  PubMed  CAS  Google Scholar 

  • Pilate G, Dejardin A, Laurans F, Leple JC (2004) Tension wood as a model for functional genomics of wood formation. New Phytol 164:63–72

    Article  CAS  Google Scholar 

  • Pramod S, Thomas V, Rao KS (2011) Structural and dimensional changes in the cambium of tapping panel dryness affected bark of Hevea brasiliensis. Phyton 51(2):161–174

    Google Scholar 

  • Robitaille HA (1975) Stress ethylene production in apple shoots. J Am Soc Hortic Sci 100:542–543

    Google Scholar 

  • Sauter M, Mekhedov SL, Kende H (1995) Gibberellin promotes histone H1 kinase-activity and the expression of CDC2 and cyclin genes during the induction of rapid growth in deep-water rice internodes. Plant J 7:623–632

    Article  PubMed  CAS  Google Scholar 

  • Scurfield G, Wardrop AB (1962) The nature of reaction wood. VI. The reaction anatomy of seedlings of woody perennials. Aust J Bot 10:93–105

    Article  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge R, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific, Oxford, pp 169–188

    Google Scholar 

  • Wardrop AB (1956) The nature of reaction wood.V. The distribution and formation of tension wood in some species of Eucalyptus. Aust J Bot 4:152–166

    Article  Google Scholar 

  • Wardrop AB (1964) The reaction anatomy of arborescent angiosperms. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, New York, pp 87–134

    Google Scholar 

  • Washusen R, Evans R (2001) The association between cellulose crystallite width and tension wood occurrence in Eucalyptus globulus. IAWA J 22(3):235–243

    Google Scholar 

  • William S (1973) Simple method for differential staining of paraffin embedded material using toluidine blue ‘O’. Stain Technol 48:247–249

    Google Scholar 

  • Yadun LL, Aloni R (1991) Polycentric vascular rays in Suaeda monoica and the control of ray initiation and spacing. Trees Struct Funct 5:22–25

    Google Scholar 

  • Yamamoto F, Kozlowski TT (1987) Effect of ethrel on growth and stem anatomy of Pinus halepensis seedlings. IAWA Bull 8:11–19

    CAS  Google Scholar 

  • Yamamoto F, Yoshida M, Okuyama T (2002) Growth stress controls negative gravitropism in woody plant stems. Planta 216:280–292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grant Commission, New Delhi for providing research fellowship under UGC major research project programme. We are thankful to the Institute for Plasma Research, Gandhinagar for providing us with SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karumanchi S. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramod, S., Patel, P.B. & Rao, K.S. Ethylene and its interaction with other hormones in tension wood formation in Leucaena leucocephala (Lam.) de Wit. J Indian Acad Wood Sci 9, 130–139 (2012). https://doi.org/10.1007/s13196-012-0077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13196-012-0077-0

Keywords

Navigation