Skip to main content
Log in

Differentiation of the ray system in woody plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The regulation of vascular ray differentiation has received limited attention, despite the fact that vascular rays constitute an important part of the secondary body of plants. In this paper we review developmental aspects of the ray system and suggest a general hypothesis for the regulation of ray differentiation and evolution. In studies of ray differentiation, two basic factors should be taken into consideration: 1) the normal gradual increase in ray size in relation to age, distance from the pith, and distance from the young leaves; and 2) the influence of wound effects on the size, structure, and spacing of rays. The relationships between the rate of cambial activity and secondary xylem differentiation are not clearly understood. There are contrasting results on the relationships between ray number and rate of radial growth. The rate of radial growth (= rate of cambial activity) is not the regulating mechanism of ray characteristics. Bünning (1952, 1965) proposed that rays are distributed regularly in the tissue, as the outcome of an inhibitory influence expressed by them. However, Bünning’s hypothesis contradicts a basic feature of the vascular ray system, namely, fusion of rays. Detailed histological studies of the secondary xylem revealed that proximity to and contact with rays plays a major role in the survival of fusiform initials in the cambium (Bannan, 1951, 1953). Such evidence led Ziegler (1964) to suggest that since the cambium is supplied predominantly via the rays, this is an effective feedback regulative system for an equidistant arrangement of the rays. The hypothesis that rays are induced and controlled by a radial signal flow seems to be the best explanation for the structure and spacing of rays. The formation of a polycentric ray—a special case of “ray” initiation inside a vascular ray—supports the idea that radial signal flow occurs within the rays (Lev-Yadun & Aloni, 1991a). This idea is also supported by findings fromQuercus species in which aggregate rays in the xylem disperse naturally in branch junctions and, following partial girdling, leave a longitudinal narrow bridge of cambium and bark as a result of enhanced axial signal flow (of auxin and other growth regulators) (Lev-Yadun & Aloni, 1991b). The longitudinally elongated shape of rays is their response to axial signal flows (mainly the polar auxin flow). Two methods have been used to study the evolution of the ray system: 1) statistical studies of the relationships between vessel and ray characteristics in many species, when vessel characteristics were the evolutionary standard, and 2) comparison of ray characteristics in fossils originating from several geological eras. We suggest that evolution of the ray system reflects changes in the relations between radial and axial signal flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abeles, F. B.. 1973. Ethylene in plant biology. Academic Press, New York.

    Google Scholar 

  • —,P. W. Morgan &M.E. Saltveit, Jr. 1992 Ethylene in plant biology. Ed. 2. Academic Press, San Diego.

    Google Scholar 

  • Ajmal, S. &M. Iqbal. 1992. Structure of the vascular cambium of varying age and its derivative tissues in the stem ofFicus rumphii Blume. Bot. J. Linn. Soc.109: 211–222.

    Article  Google Scholar 

  • —,R. Khan &M. Iqbal. 1986. Cambial structure ofHoloptelea integrifolia Planch. in relation to age Flora (Jena)178: 197–202.

    Google Scholar 

  • Aloni, R., 1980. Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures. Planta150: 255–263.

    Article  CAS  Google Scholar 

  • — 1980a. The induction of vascular tissues by auxin. Pages 363–374in P. J. Davis (ed.), Plant hormones and their role in plant growth and development. Nijhoff, Dordrecht.

    Google Scholar 

  • — 1987b. Differentiation of vascular tissues. Annual Rev. Pl. Physiol.38: 179–204.

    Article  Google Scholar 

  • — 1991. Wood formation in deciduous hardwood trees Pages 175–197in A. S. Raghavendra (ed.), Physiology of trees. John Wiley, New York.

    Google Scholar 

  • —, &A. E. Gad 1982. Anatomy of the primary phloem fiber system inPisum sativum. Amer. J. Bot.69: 979–984.

    Article  Google Scholar 

  • —, &M. H. Zimmermann. 1983. The control of vessel size and density along the plant axis —a new hypothesis. Differentiation24: 203–208.

    Article  Google Scholar 

  • &—. 1984. Length, width and pattern of regenerative vessels along strips of vascular tissue. Bot. Gaz.145: 50–54.

    Article  Google Scholar 

  • Baas, P., Lee Chenglee, Zhang Xinying, Cui Keming &Deng Yuefen. 1984. Some effects of dwarf growth on wood structure. IAWA Bull., n.s.5: 45–63.

    Google Scholar 

  • —,R. Schmid &B.J. van Heuven. 1986. Wood anatomy ofPinus longaeva (bristlecone pine) and the sustained length-on-age increase of its tracheids. IAWA Bull., n.s.7: 221–228.

    Google Scholar 

  • Back, E. L., 1969. Intercellular spaces along the ray parenchyma—the gas canal system of living wood. Wood Sci.2: 31–34.

    Google Scholar 

  • Bailey, I. W., 1910. Reversionary characters of traumatic oak wood. Bot. Gaz.49: 374–380.

    Article  Google Scholar 

  • —, 1912. The evolutionary history of the foliar ray in the wood of the dicotyledons, and its phylogenetic significance. Ann. Bot.26: 647–661.

    Google Scholar 

  • —, 1923. The cambium and its derivative tissues IV. The increase in girth of the cambium. Amer. J. Bot.10: 499–509.

    Article  Google Scholar 

  • Bande, M. B. &U. Prakash. 1984. Evolutionary trends in the secondary xylem of woody dicotyledons from the Tertiary of India. Palaeobotanist32: 44–75.

    Google Scholar 

  • Bannan, M. W., 1937. Observations on the distribution of xylem-ray tissue in conifers. Ann. Bot., n.s.1: 717–726.

    Google Scholar 

  • —. 1951. The annual cycle of size changes in the fusiform cambial cells ofChamaecyparis andThuja. Canad. J. Bot.29: 421–437.

    Article  Google Scholar 

  • —. 1953. Further observations on the reduction of fusiform cambial cells inThuja occidentalis. Canad. J. Bot.31: 63–74.

    Article  Google Scholar 

  • —. 1954. Ring width, tracheid size, and ray volume in stem wood ofThuja occidentalis L. Canad. J. Bot.32: 466–479.

    Article  Google Scholar 

  • —. 1965. Ray contacts and rate of anticlinal division in fusiform cambial cells of some Pinaceae. Canad. J. Bot.43: 487–507.

    Google Scholar 

  • Barghoorn, E. S. Jr. 1940a. Origin and development of the uniseriate ray in the Coniferae. Bull. Torrey Bot. Club67: 303–328.

    Article  Google Scholar 

  • — 1940b. The ontogenetic development and the phylogenetic specialization of rays in the xylem of dicotyledons. I. The primitive ray structure. Amer. J. Bot.27: 918–928.

    Article  Google Scholar 

  • — 1941a. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. III. The elimination of rays. Bull. Torrey Bot. Club68: 317–325.

    Article  Google Scholar 

  • — 1941b. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. II. Modification of the multiseriate and uniseriate rays. Amer. J. Bot.28: 373–382.

    Article  Google Scholar 

  • Barker, J. E.. 1979. Growth and wood properties ofPinus radiata in relation to applied ethylene. New Zealand J. Forest Sci.9: 15–19.

    CAS  Google Scholar 

  • Bauch, J., A. L. Shigo &M. Starck. 1980. Wound effects in the xylem ofAcer andBetula species. Holzforschung34: 153–160.

    Article  Google Scholar 

  • Bhat, K. M., K. V. Bhat &T. K. Dhamodaran. 1989. Fibre length variation in stem and branches of eleven tropical hardwoods. IAWA Bull., n.s.10: 63–70.

    Google Scholar 

  • Blake, T. J., R. P. Pharis &D. M. Reid. 1980. Ethylene, gibberellins, auxin and the apical control of branch angle in a conifer,Cupressus arizonica. Planta148: 64–68.

    Article  CAS  Google Scholar 

  • Bosshard, H. H. 1965. Aspects of the aging process in cambium and xylem. Holzforschung19: 65–69.

    Google Scholar 

  • Botosso, D. C. &A. Vidal Gomes. 1982. Radial vessels and series of perforated ray cells in Annonaceae. IAWA Bull., n.s.3: 39–44.

    Google Scholar 

  • Bowen, M. R. &P. F. Wareing. 1969. The interchange of14C-kinetin and14C-gibberellic acid between the bark and xylem of willow. Planta89: 108–125.

    Article  CAS  Google Scholar 

  • Boyd, J. D. 1977. Basic cause of differentiation of tension wood and compression wood. Austral. Forest. Res.7: 121–143.

    Google Scholar 

  • Braun, H. J. 1955. Beiträge zur Entwicklungsgeschichte der Markstrahlen. Bot. Stud.4: 73–131.

    Google Scholar 

  • — 1967. Entwicklung und Bau der Holzstrahlen unter dem Aspect der Kontakt-Isolations-Differenzierung gegenuber dem Hydrosystem: I, Das Prinzip der Kontakt-Isolations-Differenzierung. Holzforschung21: 33–37.

    Google Scholar 

  • —,F. Wolkinger &H. Bohme. 1967. Entwicklung und Bau der Holzstrahlen unter dem Aspect der Kontakt-Isolations-Differenzierung gegenuber dem Hydrosystem: II, Die Typen der Kontakt-Holzstrahlen. Holzforschung21: 145–153.

    Google Scholar 

  • —,— &. 1968a. Entwicklung und Bau der Holzstrahlen unter dem Aspect der Kontakt-Isolations-Differenzierung gegenuber dem Hydrosystem: III, Die Typen der Kontakt-Isolations-Holzstrahlen und der Isolations-Holzstrahlen. Holzforschung22: 53–60.

    Article  Google Scholar 

  • —,— &. 1968b. Entwicklung und Bau der Holzstrahlen unter dem Aspect der Kontakt-Isolations-Differenzierung gegenuber dem Hydrosystem: IV, Die Organisation der Holzstrahlen. Holzforschung22: 153–157.

    Google Scholar 

  • Brown, A. B. 1937. Activity of the vascular cambium in relation to wounding in the balsam poplar,Populus balsaminifera L. Canad. J. Res. Sect. C., Bot. Sci.15: 7–31.

    Google Scholar 

  • Brown, K. M. &A. C. Leopold. 1973. Ethylene and the regulation of growth in pine. Canad. J. Forest. Res.3: 143–145.

    Article  CAS  Google Scholar 

  • Bruyne, A. S. de 1952. Wood structure and age. Proc. Koninkl. Nederl. Akad. Wetensk. Amsterdam, Ser. C, Biol. Med. Sci.55: 282–286.

    Google Scholar 

  • Bünning, E. 1952. Morphogenesis in plants. Surv. Biol. Progr.2: 105–140.

    Google Scholar 

  • — 1965. Die Entstehung von Mustern in der Entwicklung von Pflanzen. Handb. Pflanzenphysiol.15(1): 383–408.

    Google Scholar 

  • Carlquist, S. 1966. Wood anatomy of Compositae. A summary, with comments on factors controlling wood evolution. Aliso6: 25–44.

    Google Scholar 

  • — 1970. Wood anatomy of insular species ofPlantago and the problem of raylessness. Bull. Torrey Bot. Club97: 353–361.

    Article  Google Scholar 

  • — 1975. Ecological strategies of xylem evolution. Univ. of California Press, Berkeley.

    Google Scholar 

  • — 1988. Comparative wood anatomy. Springer-Verlag, Berlin.

    Google Scholar 

  • — 1989. Wood and bark anatomy of the New World species ofEphedra. Aliso12: 441–483.

    Google Scholar 

  • — 1991. Anatomy of vine and liana stems: a review and synthesis. Pages 53–71in F. E. Putz & H. A. Mooney (eds.), The biology of vines. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • — 1992. Wood, bark and pith anatomy of Old World species ofEphedra and summary for the genus. Aliso13: 255–295.

    Google Scholar 

  • — &S. Zona. 1988. Wood anatomy of Acanthaceae: A survey. Aliso12: 201–227.

    Google Scholar 

  • Carmi, A., T. Sachs &A. Fahn. 1972. The relation of ray spacing to cambial growth. New Phytol.71: 349–353.

    Article  Google Scholar 

  • Casson, P. &D. R. Dobbins. 1991. Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. IAWA Bull., n.s.12: 389–417.

    Google Scholar 

  • Catesson, A.-M. 1980. The vascular cambium. Pages 12–40in C. H. A. Little (ed.), Control of shoot growth in trees. Proceedings of the Joint Workshop IUFRO Working Parties on Xylem Physiology and Shoot Growth Physiology. Fredericton, Canada.

    Google Scholar 

  • Chattaway, M. M. 1936. Relation between fibre and cambial initial length in dicotyledonous woods. Trop. Woods46: 16–20.

    Google Scholar 

  • Cheadle, V. I. &K. Esau. 1964. Secondary phloem ofLiriodendron tulipifera. Univ. Calif. Publ. Bot.36: 143–252.

    Google Scholar 

  • Cumbie, B. G. 1967. Development and structure of the xylem inCanavalia (Leguminosae). Bull. Torrey Bot. Club94: 162–175.

    Article  Google Scholar 

  • — 1983. Developmental changes in the wood ofBocconia vulcanica Donn. Smith. IAWA Bull., n. s.4: 131–140.

    Google Scholar 

  • — &D. Mertz. 1962. Xylem anatomy ofSophora (Leguminosae) in relation to habit. Amer. J. Bot.49: 33–40.

    Article  Google Scholar 

  • Dinwoodie, J. M. 1961. Tracheid and fibre length in timber: a review of literature. Forestry34: 125–144.

    Google Scholar 

  • Dobbins, D. R. &J. B. Fisher. 1986. Wound responses in girdled stems of lianas. Bot. Gaz.147: 278–289.

    Article  Google Scholar 

  • Doerksen, A. H. &R. G. Mitchell. 1965. Effects of the balsam woolly aphid upon wood anatomy of some western true firs. Forest Sci.11: 181–188.

    Google Scholar 

  • Eames, A. J. 1910. On the origin of the broad ray inQuercus. Bot. Gaz.49: 161–166.

    Article  Google Scholar 

  • Eklund, L. 1990. Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season. Trees Struct. Funct.4: 150–154.

    Google Scholar 

  • Eom, Y. G. 1988. Anatomical studies on tumorous tissue formed in a stem ofAilanthus altissima Swingle by artificial banding and its subsequent removing treatment. Ph.D. thesis, Seoul National Univ.

  • Evert, R. F. 1961. Some aspects of cambial development inPyrus communis. Amer. J. Bot.48: 479–488.

    Article  Google Scholar 

  • Ewers, F. W. 1985. Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull., n.s.6: 309–317.

    Google Scholar 

  • — &J. B. Fisher. 1991. Why vines have narrow stems: Histological trends inBauhinia (Fabaceae). Oecologia88: 233–237.

    Article  Google Scholar 

  • Fahn, A. 1979. Secretory tissues in plants. Academic Press, London.

    Google Scholar 

  • — 1988. Secretory tissues and factors influencing their development. Phyton (Austria)28: 13–26.

    Google Scholar 

  • — 1990. Plant anatomy. Ed. 4. Pergamon Press, Oxford.

    Google Scholar 

  • — &E. Zamski. 1970. The influence of pressure, wind, wounding and growth substances on the rate of resin duct formation inPinus halepensis wood. Israel J. Bot.19: 429–446.

    CAS  Google Scholar 

  • —,E. Werker &P. Baas. 1986. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Israel Academy of Sciences and Humanities, Jerusalem.

    Google Scholar 

  • —,— &P. Ben-Tzur. 1979. Seasonal effects of wounding and growth substances on development of traumatic resin ducts inCedrus libani. New Phytol.82: 537–544.

    Article  CAS  Google Scholar 

  • Field, R. J. &A. J. Peel. 1971. The metabolism and radial movement of growth regulators and herbicides in willow stems. New Phytol.70: 743–749.

    Article  CAS  Google Scholar 

  • Fisher, J. B. &F. W. Ewers. 1989. Wound healing in stems of lianas after twisting and girdling injuries. Bot. Gaz.150: 251–265.

    Article  Google Scholar 

  • Forsaith, C. C. 1920. Anatomical reduction in some alpine plants. Ecology1: 124–135.

    Article  Google Scholar 

  • Furqan, M. &Z. Ahmad. 1981. Ratio of ray and fusiform initials in the tree axis ofSterculia urens Roxb. at various height levels. Indian J. Forest.4: 293–295.

    Google Scholar 

  • Gedalovich, E. &A. Fahn. 1985. Ethylene and gum duct formation inCitrus. Ann. Bot., n.s.56: 571–577.

    CAS  Google Scholar 

  • Gersani, M. 1987. The induction of differentiation of organized vessels in a storage organ. Ann. Bot., n.s.59: 31–34.

    CAS  Google Scholar 

  • Ghouse, A. K. M. &S. Hashmi. 1980. Changes in the vascular cambium ofPolyalthia longifolia Benth. et Hook, (Annonaceae) in relation to the girth of the axis. Flora (Jena)170: 135–143.

    Google Scholar 

  • — &M. Iqbal. 1975. A comparative study on the cambial structure of some arid zone species ofAcacia andProsopis. Bot. Not.128: 327–331.

    Google Scholar 

  • — &. 1977. Variation trends in the cambial structure ofProsopis spicigera L. relation to the girth of the tree axis. Bull. Torrey Bot. Club104: 197–201.

    Article  Google Scholar 

  • — &M. Yunus. 1973. Some aspects of cambial development in the shoots ofDalbergia sissoo Roxb. Flora (Jena)162: 549–558.

    Google Scholar 

  • — & —. 1976. Cell length variation in the secondary phloem ofDalbergia ssp. with increasing age of the vascular cambium. Ann. Bot., n.s.40: 13–16.

    Google Scholar 

  • Gibson, A. C. 1978. Rayless secondary xylem ofHalophytum. Bull. Torrey Bot. Club105: 39–44.

    Article  Google Scholar 

  • Gregory, R. A. 1977. Cambial activity and ray cell abundance inAcer saccharum. Canad. J. Bot.55: 2559–2564.

    Google Scholar 

  • — &J. A. Romberger 1975. Cambial activity and height of uniseriate vascular rays in conifers. Bot. Gaz.136: 246–253.

    Article  Google Scholar 

  • Hamilton, A. J., G. W. Lycett &D. Grierson. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature346: 284–287.

    Article  CAS  Google Scholar 

  • Harms, U. &J. J. Sauter. 1992. Localization of a storage protein in the wood ray parenchyma cells ofTaxodium distichum (L.) L. C. Rich. by immunogold labeling. Trees Struct. Funct.6: 37–40.

    Google Scholar 

  • Harris, J. M. 1969. On the causes of spiral grain in corewood of radiata pine. New Zealand J. Bot.7: 189–213.

    Google Scholar 

  • — 1973. Spiral grain and xylem polarity in radiata pine: microscopy of cambial reorientation. New Zealand J. Forest. Sci.3: 363–378.

    Google Scholar 

  • — 1989. Spiral grain and wave phenomena in wood formation. Springer-Verlag, Berlin.

    Google Scholar 

  • Hejnowicz, Z. 1964. Orientation of the partition in pseudotransverse division in cambia of some conifers. Canad. J. Bot.42: 1685–1691.

    Google Scholar 

  • — 1968. The structural mechanism involved in the changes of grain in timber. Acta Soc. Bot. Poloniae37: 347–365.

    Google Scholar 

  • — 1971. Upward movement of the domain pattern in the cambium producing wavy grain inPicea excelsa. Acta Soc. Bot. Poloniae40: 499–512.

    Google Scholar 

  • — 1973. Morphogenetic waves in cambia of trees. Pl. Sci. Lett.1: 359–366.

    Article  Google Scholar 

  • — 1974. Pulsations of domain length as support for the hypothesis of morphogenetic waves in the cambium. Acta Soc. Bot. Poloniae43: 261–271.

    Google Scholar 

  • — 1975. A model for morphogenetic map and clock. J. Theor. Biol.54: 345–362.

    Article  PubMed  CAS  Google Scholar 

  • — &J. Krawczyszyn. 1969. Oriented morphogenetic phenomena in cambium of broadleaved trees. Acta Soc. Bot. Poloniae38: 547–560.

    Google Scholar 

  • — &J. A. Romberger. 1973. Migrating cambial domains and the origin of wavy grain in xylem of broadleaved trees. Amer. J. Bot.60: 209–222.

    Article  Google Scholar 

  • ——. 1979. The common basis for wood grain figures is the systematically changing orientation of cambium fusiform cells. Wood Sci. Techn.14: 89–96.

    Article  Google Scholar 

  • — &B. Zagórska-Marek. 1974. Mechanism of changes in grain inclination in wood produced by storeyed cambium. Acta Soc. Bot. Poloniae43: 381–398.

    Google Scholar 

  • Holl, W. 1975. Radial transport in the rays. Pages 432–450in M. H. Zimmermann, & J. A. Milburn (eds.), Encyclopedia of plant physiology. Vol. 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Hook, D. D., C. L. Brown &R. H. Wetmore. 1972. Aeration in trees. Bot. Gaz.133: 443–454.

    Article  Google Scholar 

  • IAWA Committee. 1989. List of microscopic features for, hardwood identification. IAWA Bull., n.s.10: 219–332.

    Google Scholar 

  • IAWA Committee on Nomenclature. 1964. Multilingual glossary of terms used in wood anatomy. Konkordia, Winterthur, Switzerland.

    Google Scholar 

  • Imaseki, H. 1985. Hormonal control of wound-induced responses. Pages 485–512in R. P. Pharis & D. M. Reid (eds.), Encyclopedia of plant physiology, n.s. Vol. 11. Springer-Verlag, Berlin.

    Google Scholar 

  • Ingemarsson, B. S. M., E. Lundqvist &L. Eliasson. 1991. Seasonal variation in ethylene concentration in the wood ofPinus sylvestris L. Tree Physiol.8: 273–279.

    PubMed  CAS  Google Scholar 

  • Iqbal, M. &A. K. M. Ghouse. 1987. Anatomy of the vascular cambium ofAcacia nilotica (L.) Del. var.lelia Troup (Mimosaceae) in relation to age and season. Bot. J. Linn. Soc.94: 385–397.

    Article  Google Scholar 

  • — & —. 1990. Cambial concept and organisation. Pages 1–36in M. Iqbal (ed.), The vascular cambium. John Wiley, New York.

    Google Scholar 

  • James, D. J., A. J. Passey, D. J. Barbara &M. Bevan. 1989. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Pl. Cell Rep.7: 658–661.

    CAS  Google Scholar 

  • Jewell, F. F. &N. M. Walker. 1967. Histology ofCronartium quercuum galls on shortleaf pine. Phytopathology57: 545–550.

    Google Scholar 

  • Kagan, M. L., N. Novoplansky &T. Sachs. 1992. Variable cell lineages form the functional pea epidermis. Ann. Bot., n.s.69: 303–312.

    Google Scholar 

  • Kennedy, R. W. 1970. An outlook for basic wood anatomy research. Wood Fiber2: 182–187.

    Google Scholar 

  • Kirschner, H., T. Sachs &A. Fahn. 1971. Secondary xylem reorientation as a special case of vascular tissue differentiation. Israel J. Bot.20: 184–198.

    Google Scholar 

  • Klee, H. J. &M. Estelle. 1991. Molecular genetic approaches to plant hormone biology. Annual Rev. Pl. Physiol. Pl. Mol. Biol.42: 529–551.

    Article  CAS  Google Scholar 

  • —,R. B. Horsch, M. A. Hinchee, M. B. Hein &N. L. Hoffmann. 1987. The effects of overproduction of twoAgrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenicPetunia plants. Genes & Developm.1: 86–96.

    Article  CAS  Google Scholar 

  • Kozlowski, T.T. 1971. Growth and development of trees. Academic Press, New York.

    Google Scholar 

  • Krawczyszyn, J. 1971. Unidirectional splitting and uniting of rays in the cambium ofPlatanus accompanying the formation of interlocked grain in wood. Acta Soc. Bot. Poloniae40: 57–79.

    Google Scholar 

  • — 1972. Movement of the cambial domain pattern and mechanism of formation of interlocked grain inPlatanus. Acta Soc. Bot. Poloniae41: 443–461.

    Google Scholar 

  • — 1973. Domain patterns in the cambium of youngPlatanus stems. Acta Soc. Bot. Poloniae42: 637–648.

    Google Scholar 

  • Kribs, D. A. 1935. Salient lines of structural specialization in the wood rays of dicotyledons. Bot. Gaz.96: 547–557.

    Article  Google Scholar 

  • Kučera, L. J. 1985. On the morphology of the intercellular spaces in the wood rays. IAWA Bull., n.s.6: 85.

    Google Scholar 

  • — &M. Bariska. 1972. Einfluss der Dorsiventralitat des Astes auf die Markstrahlbildung bei der Tanne (Abies alba Mill.). Vierteljahrsschr. Naturf. Ges. Zürich117: 305–313.

    Google Scholar 

  • — &H. H. Bosshard. 1975. The presence of biseriate rays in fir (Abies alba Mill.). IAWA Bull.1975(4): 51–56.

    Google Scholar 

  • — &V. Nečesany. 1970. The effect of dorsiventrality on the amount of wood rays in the branch of fir (Abies alba Mill.) and poplar (Populus monilifera Henry). Part I: Some wood ray characteristics. Drevarsky Vyskum15: 1–6.

    Google Scholar 

  • — &W. R. Philipson. 1978. Growth eccentricity and reaction anatomy in branchwood ofPseudowintera colorata. Amer. J. Bot.65: 601–607.

    Article  Google Scholar 

  • Kuroda, K. &K. Shimaji. 1983. Traumatic resin canal formation as a marker of xylem growth. Forest Sci.29: 653–659.

    Google Scholar 

  • — & —. 1984. Wound effects on xylem cell differentiation in a conifer. IAWA Bull., n.s.5: 295–305.

    Google Scholar 

  • — & —. 1985. Wound effects on cytodifferentiation in hardwood xylem. IAWA Bull., n.s.6: 107–118.

    Google Scholar 

  • Lee, P. W. &Y. G. Eom. 1987. Wood identification of the veneer species that grow in Korea—II. Wood characteristics and identification by the microscopic features. Wood Sci. Techn.15: 22–55.

    Google Scholar 

  • — & —. 1988. Anatomical comparison between compression wood and opposite wood in the branch of Korean pine (Pinus koraiensis). IAWA Bull., n.s.9: 275–284.

    Google Scholar 

  • Leney, L. &L. D. Moore. 1977. Traumatic resin canals in western hemlock,Tsuga heterophylla (Raf.) Sarg. IAWA Bull.1977/2: 23–24.

    Google Scholar 

  • Lenz, O. 1967. Action de la neige et du gel sur les arbres de montagne, en particulier sur leur forme et l’anatomie de la tige. Mitt. Schweiz. Anst. Forstl. Versuchswesen43: 289–316.

    Google Scholar 

  • Leopold, A. C., K. M. Brown &F. H. Emerson. 1972. Ethylene in the wood of stressed trees. Hort. Sci.7: 175.

    Google Scholar 

  • Leple, J. C., A. C. M. Brasileiro, M. F. Michel, F. Delmotte &L. Jouanin. 1992. Transgenic poplars: Expression of chimeric genes using four different constructs. Pl. Cell Rep.11: 137–141.

    Article  CAS  Google Scholar 

  • Lev-Yadun, S. 1992. Differentiation of the ray system in woody plants. Ph.D. thesis, Tel Aviv University.

  • — 1994. Experimental evidence for the autonomy of ray differentiation inFicus sycomorus L. New Phytol.126: 499–504.

    Article  Google Scholar 

  • — &R. Aloni. 1990a. Vascular differentiation in branch junctions of trees: Circular patterns and functional significance. Trees Struct. Funct.4: 49–54.

    Google Scholar 

  • ——. 1990b. Polar patterns of periderm ontogeny, their relationship to leaves and buds, and the control of cork formation. IAWA Bull., n.s.11: 289–300.

    Google Scholar 

  • ——. 1991a. Polycentric vascular rays inSuaeda monoica and the control of ray initiation and spacing. Trees Struct. Funct.5: 22–25.

    Google Scholar 

  • ——. 1991b. Natural and experimentally induced dispersion of aggregate rays in shoots ofQuercus ithaburensis Decne. and Q.calliprinos Webb. Ann. Bot., n.s.68: 85–91.

    Google Scholar 

  • ——. 1991c. An experimental method of inducing “hazel” wood inPinus halepensis (Pinaceae). IAWA Bull., n.s.12: 445–451.

    Google Scholar 

  • ——. 1992. The role of wounding in the differentiation of vascular rays. Int. J. Pl. Sci.153: 348–357.

    Article  Google Scholar 

  • ——. 1993a. Variant secondary growth in old stems ofEphedra campylopoda C. A. Mey. Bot. J. Linn. Soc.112: 51–58.

    Google Scholar 

  • ——. 1993b. Effect of wounding on the relations between vascular rays and vessels inMelia azedarach L. New Phytol.124: 339–344.

    Article  Google Scholar 

  • Loopstra, C. A., A.-M. Stomp &R. R. Sederoff. 1990.Agrobacterium-mediated DNA transfer in sugar pine. Pl. Molec. Biol.15: 1–9.

    Article  CAS  Google Scholar 

  • Lowerts, G., E. A. Wheeler &R. C. Kellison. 1986. Characteristics of wound-associated wood of yellow-poplar (Liriodendron tulipifera L.). Wood Fiber Sci.18: 537–552.

    Google Scholar 

  • Margaris, N. S. &P. Papadogianni. 1977. The ratio of ray and fusiform initials in some plants dominating Mediterranean formations in Greece. Flora166: 219–222.

    Google Scholar 

  • Mattoo, A. K. &N. Aharoni. 1988. Ethylene and plant senescence. Pages 241–280in L. D. Nooden & A. C. Leopold (eds.), Senescence and aging in plants. Academic Press, San Diego.

    Google Scholar 

  • Melaragno, J. E., B. Mehrotra &A. A. Coleman. 1993. Relationship between endopolyploidy and cell size in epidermal tissue ofArabidopsis. Pl. Cell5: 1661–1668.

    Google Scholar 

  • Metcalfe, C. R. &L. Chalk. 1950. Anatomy of the dicotyledons. Clarendon Press, Oxford.

    Google Scholar 

  • ——. 1983. Anatomy of the dicotyledons. Ed. 2 Vol. 2. Clarendon Press, Oxford.

    Google Scholar 

  • Mitchell, R. G. 1967. Abnormal ray tissue in three true firs infested by the balsam woolly aphid. Forest Sci.13: 327–332.

    Google Scholar 

  • Mulhern, J., W. Shortle &A. L. Shigo. 1979. Barrier zones in red maple: An optical and scanning microscope examination. Forest Sci.25: 311–316.

    Google Scholar 

  • Myer, J. E. 1922. Ray volumes of the commercial woods of the United States and their significance. J. Forest.20: 337–351.

    Google Scholar 

  • Nečesany, V. 1958. Effect of ß-indoleacetic acid on the formation of reaction wood. Phyton11: 117–127.

    Google Scholar 

  • Neeff, F. 1914. Über Zellumlagerung. Ein Beitrag zur experimentellen Anatomie. Z. Bot.6: 465–547.

    Google Scholar 

  • — 1922. Über polares Wachstum von Pflanzenzellen. Jahrb. Wiss. Bot.61: 205–283.

    Google Scholar 

  • Nelson, N. D. &W. E. Hillis. 1978. Ethylene and tension wood formation inEucalyptus gomphocephala. Wood Sci. Techn.12: 309–315.

    Article  CAS  Google Scholar 

  • Oeller, P. W., L. Min-Wong, L. P. Taylor, D. A. Pike &A. Theologis. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science254: 437–439.

    Article  PubMed  CAS  Google Scholar 

  • Oever, L. van den, P. Baas &M. Zandee. 1981. Comparative wood anatomy ofSymplocos and latitude and altitude of provenance. IAWA Bull., n.s.2: 3–24.

    Google Scholar 

  • Olien, W. &M. J. Bukovac. 1982. Ethepon-induced gummosis in sour cherry (Prunus cerasus L.) I. Effect on xylem function and shoot water status. Pl. Physiol.70: 547–555.

    CAS  Google Scholar 

  • Ollinmaa, P. J. 1959. Reaktiopuututkimuksia. (Study on reaction wood). Acta Forest. Fenn.72: 1–54.

    Google Scholar 

  • Onaka, F. 1949. Studies on compression and tension wood. Wood Res.1: 1–88.

    Google Scholar 

  • Outer, R. W. den &W. L. H. van Veenendaal. 1981. Wood and bark anatomy ofAzima tetracantha Lam. (Salvadoraceae) with description of its included phloem. Acta Bot. Neerl.30: 199–207.

    Google Scholar 

  • Paliwal, G. S. &L. M. Srivastava. 1969. The cambium ofAlseuosmia. Phytomorphology19: 5–8.

    Google Scholar 

  • Paliwal, S. P. &G. S. Paliwal. 1990. Influence of climatic variations on the seasonal behaviour of the vascular cambium in some Himalayan trees. III.Rhododendron arboreum Smith. Phytomorphology40: 257–271.

    Google Scholar 

  • Pearson, H. H. W. 1929. Gnetales. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Penarrubia, L., M. Aguilar, L. Margossian &R. L. Fischer. 1992. An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Pl. Cell4: 681–687.

    CAS  Google Scholar 

  • Pfeiffer, H. 1926. Das abnorme Dickenwachstum. Handbuch der Pflanzenanatomie. Bd. 9. Lief. 15. Borntraeger, Berlin.

    Google Scholar 

  • Philipson, W. R., J. M. Ward &B. G. Butterfield. 1971. The vascular cambium. Chapman & Hall, London.

    Google Scholar 

  • Pyszynski, W. 1972. Downward movement of the domain pattern inAesculus cambium producing wavy-grained xylem. Acta Soc. Bot. Poloniae41: 511–517.

    Google Scholar 

  • Ridoutt, B. G. &R. Sands. 1993. Within-tree variation in cambial anatomy and xylem cell differentiation inEucalyptus globulus. Trees Struct. Funct.8: 18–22.

    Google Scholar 

  • Rier, J. P. &A. L. Shigo. 1972. Some changes in red maple,Acer rubrum, tissues within 34 days after wounding in July. Canad. J. Bot.50: 1783–1784.

    Google Scholar 

  • Roberts, L. W., P. B. Gahan &R. Aloni. 1988. Vascular differentiation and plant growth regulators. Springer-Verlag, Berlin.

    Google Scholar 

  • Robitaille, H. A. 1975. Stress ethylene production in apple shoots. J. Amer. Soc. Hort. Sci.100: 524–527.

    CAS  Google Scholar 

  • — &A. C. Leopold. 1974. Ethylene and the regulation of apple stem growth under stress. Physiol. Pl.32: 301–304.

    Article  CAS  Google Scholar 

  • Romano, C. P., M. B. Hein &H. J. Klee. 1991. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene ofPseudomonas savastanoi. Genes & Developm.5: 438–446.

    Article  CAS  Google Scholar 

  • Sachs, T. 1981. The control of patterned differentiation of vascular tissues. Advances Bot. Res.9: 151–262.

    Article  Google Scholar 

  • Saks, Y. &R. Aloni. 1985. Polar gradients of tracheid number and diameter during primary and secondary xylem development in young seedlings ofPinus pinea L. Ann. Bot., n.s.56: 771–778.

    Google Scholar 

  • Savidge, R. A. 1988. Auxin and ethylene regulation of diameter growth in trees. Tree Physiol.4: 401–414.

    PubMed  CAS  Google Scholar 

  • — &J. L. Farrar. 1984. Cellular adjustments in the vascular cambium leading to spiral grain formation in conifers. Canad. J. Bot.62: 2872–2879.

    Google Scholar 

  • Sharon, E. M. 1973. Some histological features ofAcer saccharum wood formed after wounding. Canad. J. Forest. Res.3: 83–89.

    Article  Google Scholar 

  • Shigo, A. L. 1984. Comparatmentalization: A conceptual framework for understanding how trees grow and defend themselves. Annual Rev. Phytopathol.22: 189–214.

    Article  Google Scholar 

  • Shigo, A. L. & H. G. Marx. 1977. Compartmentalization of decay in trees. USDA Forest. Serv. Inform. Bull. 405.

  • Sieber, M. &L. J. Kučera. 1980. On the stem anatomy ofClematis vitalba L. IAWA Bull., n.s.1: 49–54.

    Google Scholar 

  • Skene, D. S. 1965. The development of kino veins inEucalyptus obliqua L’Herit. Austral. J. Bot.13: 367–378.

    Article  CAS  Google Scholar 

  • Smith, F. H. 1967. Effects of balsam woolly aphid (Adelges piceae) infestation on cambial activity inAbies grandis. Amer. J. Bot.54: 1215–1223.

    Article  Google Scholar 

  • Sprengel, F. 1936. Über die Kropfkrankheit an Eiche, Kiefer und Fichte. Phytopathol. Z.9: 583–635.

    Google Scholar 

  • Stein, W. 1993. Modeling the evolution of stelar architecture in vascular plants. Int. J. Pl. Sci.154: 229–263.

    Article  Google Scholar 

  • Thompson, W. P. 1911. On the origin of the multiseriate ray of the dicotyledons. Ann. Bot.25: 1005–1014.

    Google Scholar 

  • Timell, T. E. 1972. Observations on the rays in compression wood. Holz als Roh- und Werkstoff30: 267–273.

    Article  Google Scholar 

  • — 1986. Compression wood in gymnosperms. Springer-Verlag, Berlin.

    Google Scholar 

  • Tippett, J. &A. L. Shigo. 1981. Barriers to decay in conifer roots. Eur. J. Forest Pathol.11: 51–59.

    Article  Google Scholar 

  • Tupper-Carey, R. M. 1930. Observations on the anatomical changes in tissue bridges across rings through the phloem of trees. Leeds Philos. Soc., Sci. Sect.2: 86–94.

    Google Scholar 

  • Van Bel, A. J. E. 1990. Xylem-phloem exchange via the rays: The undervalued route of transport. J. Exp. Bot.41: 631–644.

    Article  Google Scholar 

  • Verrall, A. F. 1928. A comparative study of the structure and physical properties of compression wood and normal wood. M.S. thesis, University of Minnesota.

  • Vliet, G. J. C. M. van 1976. Radial vessels in rays. IAWA Bull.1976(3): 35–37.

    Google Scholar 

  • Vöchting, H. 1918. Untersuchungen zur experimentellen Anatomie und Pathologie des Pflanzenkörpers. II. Die Polarität der Gewächse. H. Laupp, Tübingen.

    Google Scholar 

  • Wareing, P. E. 1951. Growth studies in woody species. IV. The initiation of cambial activity in ring-porous species. Physiol. Pl.4: 546–562.

    Article  Google Scholar 

  • Westing, A. H. 1965. Formation and function of compression wood in gymnosperms. Bot. Rev. (Lancaster)31: 381–480.

    Article  Google Scholar 

  • — 1968. Formation and function of compression wood in gymnosperms. II. Bot. Rev. (Lancaster)34: 51–78.

    Article  Google Scholar 

  • Wetmore, R. H. 1926a. Organization and significance of lenticels in dicotyledons. I. Lenticels in relation to aggregate and compound storage rays in woody stems. Lenticels and roots. Bot. Gaz.82: 71–88.

    Article  Google Scholar 

  • — 1926b. Organization and significance of lenticels in dicotyledons. II. Lenticels in relation to diffuse storage rays of woody stems. Bot. Gaz.82:113–131.

    Article  Google Scholar 

  • Wheeler, E. A. &P. Baas. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull., n.s.12: 275–332.

    Google Scholar 

  • White, D. J. B. 1962. Tension wood in a branch of sassafras. J. Inst. Wood Sci.2: 74–80.

    Google Scholar 

  • — &A. W. Robards 1966. Some effects of radial growth rate upon the rays of certain ring-porous hardwoods. J. Inst. Wood Sci.17: 45–52.

    Google Scholar 

  • Wilde, H. D., R. B. Meagher &S. A. Merkle. 1992. Expression of foreign genes in transgenic yellow-poplar plants. Pl. Physiol.98:114–120.

    CAS  Google Scholar 

  • Wilson, B. F. 1963. Increase in cell wall surface area during enlargement of cambial derivatives inAbies concolor. Amer. J. Bot.50: 95–102.

    Article  Google Scholar 

  • — 1964. A model for cell production by the cambium of conifers. Pages 19–36in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, New York.

    Google Scholar 

  • Wloch, W. &W. Szendera. 1989. The storeyed and non-storeyed arrangement of rays in the storeyed cambium ofTilia cordata Mill. Acta Soc. Bot. Poloniae58: 211–228.

    Google Scholar 

  • — &S. Wawrzyniak. 1990. The configuration of events and cell growth activity in the storeyed cambium of the linden (Tilia cordata Mill.). Acta Soc. Bot. Poloniae59: 25–43.

    Google Scholar 

  • —,J. Karczewski &B. Ogrodnik. 1993. Relationship between the grain pattern in the wood, domain pattern and pattern of growth activity in the storeyed cambium of trees. Trees Struct. Funct.7: 137–143.

    Google Scholar 

  • Yamamoto, F. &T. T. Kozlowski. 1987a. Effect of ethrel on growth and stem anatomy ofPinus halepensis seedlings. IAWA Bull., n.s.8: 11–19.

    CAS  Google Scholar 

  • ——. 1987b. Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy, and ethylene production ofAcer platanoides seedlings. Scand. J. Forest Res.2: 141–156.

    Google Scholar 

  • —,G. Angeles &T. T. Kozlowski. 1987. Effect of ethrel on stem anatomy ofUlmus americana seedlings. IAWA Bull., n.s.8: 3–9.

    Google Scholar 

  • Zagórska-Marek, B. &Z. Hejnowicz. 1980. Discontinuous lines on the radial face of wavy-grained xylem as a manifestation of morphogenetic waves in the cambium. Acta Soc. Bot. Poloniae49: 49–62.

    Google Scholar 

  • — &C. H. A. Little. 1986. Control of fusiform initial orientation in the vascular cambium ofAbies balsamea stems by indol-3-ylacetic acid. Canad. J. Bot.64: 1120–1128.

    Google Scholar 

  • Zajaczkowski, S., T. J. Wodzicki &J. A. Romberger. 1984. Auxin waves and plant morphogenesis. Pages 244–262in T. K. Scott (ed.), Encyclopedia of plant physiology, n.s. Vol. 10. Springer-Verlag, Berlin.

    Google Scholar 

  • Zamski, E. &P. Wareing. 1974. Vertical and radial movement of auxin in young sycamore plants. New Phytol.73: 61–69.

    Article  CAS  Google Scholar 

  • Ziegler, H. 1964. Storage, mobilization and distribution of reserve material in trees. Pages 303–320in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev-Yadun, S., Aloni, R. Differentiation of the ray system in woody plants. Bot. Rev 61, 45–84 (1995). https://doi.org/10.1007/BF02897151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897151

Keywords

Navigation