Skip to main content
Log in

A diffusion model for cell polarization with interactions on the membrane

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We deal with a two-component system of linear diffusion equations in the bulk, under nonlinear interactions on the boundary. We give discussions on the existence and stability of equilibrium solutions. In particular, a stable non-uniform equilibrium solution is considered as representing a polarized state of a cell. Conditions for the stability of equilibrium solutions are given. To illustrate the results in concrete terms, we also analyze one dimensional problem in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amann, H.: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 72, 201–269 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anma, A., Sakamoto, K., Yoneda, T.: Unstable subsystems cause Turing instability. Kodai Math. J. 35, 215–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anma, A., Sakamoto, K.: Turing type mechanisms for linear diffusion systems under non-diagonal Robin boundary conditions. SIAM J. Math. Anal. 45, 3611–3628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anma, A., Sakamoto, K.: Destabilization of uniform steady state in linear diffusion systems with nonlinear boundary conditions. Adv. Stud. Pure Math. 64, 201–207 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Aronson, D.G., Peletier, L.A.: Global stability of symmetric and asymmetric concentration profiles in catalyst particles. Arch. Ration. Mech. Anal. 54, 175–204 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arrieta, J.M., Carvalho, A.N., Rodríguez-Bernal, A.: Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions. J. Differ. Equ. 168, 33–59 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Auchmuty, G.: Steklov eigenproblems and the representation of solutions of elliptic boundary value problems. Numer. Funct. Anal. Opt. 25, 321–348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball, J.M., Peletier, L.A.: Stabilization of concentration profiles in catalyst particles. J. Differ. Equ. 20, 356–368 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ishihara, S., Otsuji, M., Mochizuki, A.: Transient and steady state of mass-conserved reaction–diffusion systems. Phys. Rev. E 75, 015203 (2007). (R)

    Article  Google Scholar 

  10. Jimbo, S., Morita, Y.: Lyapunov function and spectrum comparison for a reaction–diffusion system with mass conservation. J. Differ. Equ. 255, 1657–1683 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. LaSalle, J.: The extent of asymptotic stability. Proc. Natl. Acad. Sci. USA 46, 573–577 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. LaSalle, J., Lefschetz, S.: Stability by Liapunov’s Direct Methods with Applications. Academic Press, New York (1961)

    Google Scholar 

  13. Levine, H., Rappel, W.-J.: Membrane-bound Turing patterns. Phys. Rev. E 72, 061912 (2005)

    Article  MathSciNet  Google Scholar 

  14. Mori, Y., Jilkine, A., Edelstein-Keshet, L.: Wave-pinning and cell polarity from a bistable reaction–diffusion system. Biophys. J. 94, 3684–3697 (2008)

    Article  Google Scholar 

  15. Morita, Y.: Spectrum comparison for a conserved reaction–diffusion system with a variational property. J. Appl. Anal. Comput. 1, 1–15 (2011)

    MathSciNet  Google Scholar 

  16. Morita, Y., Ogawa, T.: Stability and bifurcation of non constant solutions to a reaction–diffusion system with conservation of mass. Nonlinearity 23, 1387–1411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Otsuji, M., Ishihara, S., Co, C., Kaibuchi, K., Mochizuki, A., Kuroda, S.: A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3(6), e108 (2007)

    Article  MathSciNet  Google Scholar 

  18. Sakamoto, K.: Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions. Discret. Contin. Dyn. Syst. Ser. B 21(2), 641–654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sharma, V., Morgan, J.: Global existence of solutions to reaction-diffusion systems with mass transport type boundary conditions. SIAM J. Math. Anal. 48, 4202–4240 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for useful comments for the revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Morita.

Additional information

Dedicated to Professor Masayasu Mimura on the occasion of his 75th birthday.

Yoshihisa Morita was partially supported by JSPS KAKENHI, (B) 26287025 and (A) 26247013. Kunimochi Sakamoto was partially supported by JSPS KAKENHI, (B) 26287025 and (C) 16K05231.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, Y., Sakamoto, K. A diffusion model for cell polarization with interactions on the membrane. Japan J. Indust. Appl. Math. 35, 261–276 (2018). https://doi.org/10.1007/s13160-017-0290-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0290-8

Keywords

Mathematics Subject Classification

Navigation