Skip to main content

Advertisement

Log in

Allometric Models for Estimating Aboveground Biomass, Carbon and Nitrogen Stocks in Temperate Avicennia marina Forests

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

An Erratum to this article was published on 02 March 2017

Abstract

Estuarine ecosystems are changing rapidly in response to anthropogenic impacts. Mangrove expansion in New Zealand is mainly attributed to favourable climatic conditions and increased sedimentation due to land use change. This expansion is associated with large scale shifts in ecosystem structure and function, with significant potential impacts on coastal carbon and nitrogen storage. A fundamental aspect of understanding these impacts is accurately estimating storage within above ground biomass. We developed allometric equations to estimate above ground biomass, carbon and nitrogen stocks for temperate Avicennia marina subsp. Australasica growing near the southern limit of the species distribution range in New Zealand. We compare these equations with existing equations for Avicennia spp. Tree height, trunk circumference, tree canopy volume and tree canopy area were strong predictors of total above ground biomass, carbon, and nitrogen stocks. Carbon and nitrogen stocks accounted for 41.23 ± 0.40 % and 1.28 ± 0.03 %, respectively, of total above ground biomass. This study is the first to develop allometric equations to estimate biomass, carbon and nitrogen stocks in temperate Avicennia marina. These equations can be used to improve assessments of the impact of changes on mangrove forest structure and function, in particular carbon and nitrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aerts R, Chapin FI (2000) The mineral nutrition of wild plants revisited. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Alfaro AC (2006) Benthic macro-invertebrate community composition within a mangrove/seagrass estuary in northern New Zealand. Estuar, Coast Shelf Science 66(1–2):97–110. doi:10.1016/j.ecss.2005.07.024

    Article  Google Scholar 

  • Alongi D, Clough B, Dixon P, Tirendi F (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17(1):51–60. doi:10.1007/s00468-002-0206-2

    Article  CAS  Google Scholar 

  • Alongi DM (2013) Cycling and global fluxes of nitrogen in mangroves. Glob Environ Res 17:173–182

    CAS  Google Scholar 

  • Balke T, Swales A, Lovelock CE, Herman PMJ, Bouma TJ (2015) Limits to seaward expansion of mangroves: Translating physical disturbance mechanisms into seedling survival gradients. J Exp Mar Biol Ecol 467:16–25. doi:10.1016/j.jembe.2015.02.015

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2010) The value of estuarine and coastal ecosystem services. Ecol Monogr 81(2):169–193. doi:10.1890/10-1510.1

    Article  Google Scholar 

  • Beard, C.M. (2006). Physiological Constraints on the Latitudinal Distribution of the Mangrove Avicennia marina (Forsk.) Vierh. subsp. australasica (Walp.) J. Everett (Avicenniaceae) in New Zealand. PhD Thesis., University of Waikato, Hamilton, New Zealand

  • Beauchamp JJ, Olson JS (1973) Corrections for bias in regression estimates after logarithmic transformation. Ecology 54(6):1403–1407. doi:10.2307/1934208

    Article  Google Scholar 

  • Bouillon S, Borges AV, Castañeda-Moya E, Diele K, Dittmar T, Duke NC, et al. (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22(2). doi:10.1029/2007GB003052

  • Briggs SV (1977) Estimates of biomass in a temperate mangrove community. Aust J Ecol 2(3):369–373. doi:10.1111/j.1442-9993.1977.tb01151.x

    Article  Google Scholar 

  • Bulmer RH, Lundquist CJ, Schwendenmann L (2015) Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences 12(20):6169–6180. doi:10.5194/bg-12-6169-2015

    Article  Google Scholar 

  • Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, et al. (2014) Increasing frequency of extreme el Nino events due to greenhouse warming. Nat Clim Chang 4(2):111–116. doi:10.1038/nclimate2100

    Article  CAS  Google Scholar 

  • CliFlo (2013). The National Climate Database. http://cliflo.niwa.co.nz/. Date accessed: 17/01/15

  • Comley BWT, McGuinness KA (2005) Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust J Bot 53(5):431–436. doi:10.1071/BT04162

    Article  Google Scholar 

  • Doughty C, Langley JA, Walker W, Feller I, Schaub R, Chapman S (2015) Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuar Coasts 39(2):385–396. doi:10.1007/s12237-015-9993-8

    Article  Google Scholar 

  • Duke N, Ball M, Ellison J (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7(1):27–47. doi:10.1111/j.1466-8238.1998.00269.x

    Article  Google Scholar 

  • Ellis J, Nicholls P, Craggs R, Hofstra D, Hewitt J (2004) Effects of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Mar Ecol Prog Ser 270:71–82. doi:10.3354/meps270071

    Article  Google Scholar 

  • Enright NJ (2001) Nutrient accessions in a mixed conifer–angiosperm forest in northern New Zealand. Austral Ecolo 26(6):618–629. doi:10.1046/j.1442-9993.2001.01128.x

    Article  Google Scholar 

  • Hume TM, Herdendorf CE (1988) A geomorphic classification of estuaries and its application to coastal resource management—A New Zealand example. Ocean Shoreline Manage 11(3):249–274. doi:10.1016/0951-8312(88)90022-7

    Article  Google Scholar 

  • IPCC (2014). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change (IPCC). Switzerland.

  • Kelleway JJ, Saintilan N, Macreadie PI, Ralph PJ (2016a) Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems:1–16. doi:10.1007/s10021-016-9972-3

  • Kelleway JJ, Saintilan N, Macreadie PI, Skilbeck CG, Zawadzki A, Ralph PJ (2016b) Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Glob Chang Biol 22(3):1097–1109. doi:10.1111/gcb.13158

    Article  PubMed  Google Scholar 

  • Khan AB (2013) Assessment of carbon storage in Pondicherry mangroves, Pondicherry, India. Acta Biologica Malaysiana 2(3):95–99

    Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89(2):128–137. doi:10.1016/j.aquabot.2007.12.006

    Article  Google Scholar 

  • Konôpka B, Pajtík J, Moravčík M, Lukac M (2010) Biomass partitioning and growth efficiency in four naturally regenerated forest tree species. Basic Appl Ecol 11(3):234–243. doi:10.1016/j.baae.2010.02.004

    Article  Google Scholar 

  • Krauss KW, McKee KL, Hester MW (2014) Water use characteristics of black mangrove (Avicennia germinans) communities along an ecotone with marsh at a northern geographical limit. Ecohydrology 7(2):354–365. doi:10.1002/eco.1353

    Article  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 north American species. Biomass Bioenergy 25(4):381–388. doi:10.1016/S0961-9534(03)00033-3

    Article  CAS  Google Scholar 

  • LINZ (2016). LINZ (Land Information New Zealand Tide predictions). [Online]. Available: http://www.linz.govt.nz/hydro/tidal-info/tide-tables. Accessed 17/01/16 2016

  • Lovelock C, Feller I, Ellis J, Schwarz A, Hancock N, Nichols P, et al. (2007a) Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia 153(3):633–641. doi:10.1007/s00442-007-0750-y

    Article  PubMed  Google Scholar 

  • Lovelock CE (2008) Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11(2):342–354. doi:10.1007/s10021-008-9125-4

    Article  CAS  Google Scholar 

  • Lovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller IC (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ 29(5):793–802. doi:10.1111/j.1365-3040.2005.01446.x

    Article  CAS  PubMed  Google Scholar 

  • Lovelock CE, Feller IC, Ball MC, Ellis J, Sorrell B (2007b) Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol Lett 10(12):1154–1163. doi:10.1111/j.1461-0248.2007.01112.x

    Article  CAS  PubMed  Google Scholar 

  • Lovelock CE, Sorrell BK, Hancock N, Hua Q, Swales A (2010) Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13(3):437–451. doi:10.1007/s10021-010-9329-2

    Article  CAS  Google Scholar 

  • Macinnis-Ng C, Schwendenmann L (2015) Litterfall, carbon and nitrogen cycling in a southern hemisphere conifer forest dominated by kauri (Agathis australis) during drought. Plant Ecol 216(2):247–262. doi:10.1007/s11258-014-0432-x

    Article  Google Scholar 

  • Mackey A (1993) Biomass of the mangrove Avicennia marina near Brisbane, South-Eastern Queensland. Mar Freshw Res 44(5):721–725. doi:10.1071/MF9930721

    Article  Google Scholar 

  • Maniatis D, Saint André L, Temmerman M, Malhi Y, Beeckman H (2011) The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement. iForest. Biogeosci For 4(4):150–159. doi:10.3832/ifor0575-004

    Google Scholar 

  • May JD (1999) Spatial variation in litter production by the mangrove Avicennia marina Var. Australasica in Rangaunu harbour, northland, New Zealand. N Z J Mar Freshw Res 33(2):163–172. doi:10.1080/00288330.1999.9516866

    Article  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, et al. (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560. doi:10.1890/110004

    Article  Google Scholar 

  • Morrisey DJ, Skilleter GA, Ellis JI, Burns BR, Kemp CE, Burt K (2003) Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand. Estuar Coast Shelf Sci 56(3–4):581–592. doi:10.1016/s0272-7714(02)00208-1

    Article  Google Scholar 

  • Morrisey, D.J., Swales, A., Dittmann, S., Morrison, M., Lovelock, C., and Beard, C. (2010). The ecology and management of temperate mangroves, in Oceonogr Mar Biolo. CRC Press 48:43-160

  • Nipithwittaya S, Bualert S (2012) Above ground carbon sequestration in mangrove forest filtration system. J Appl Sci 12:1537–1546

    Article  CAS  Google Scholar 

  • Osland MJ, Day RH, Larriviere JC, From AS (2014) Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS One 9(6):e99604. doi:10.1371/journal.pone.0099604

    Article  PubMed  PubMed Central  Google Scholar 

  • Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob Chang Biol 19(5):1482–1494. doi:10.1111/gcb.12126

    Article  PubMed  Google Scholar 

  • Osland MJ, Enwright NM, Day RH, Gabler CA, Stagg CL, Grace JB (2016) Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob Chang Biol 22(1):1–11. doi:10.1111/gcb.13084

    Article  PubMed  Google Scholar 

  • Peichl M, Arain MA (2007) Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manag 253(1–3):68–80. doi:10.1016/j.foreco.2007.07.003

    Article  Google Scholar 

  • Rodrigues DP, Hamacher C, Estrada GCD, Soares MLG (2015) Variability of carbon content in mangrove species: Effect of species, compartments and tidal frequency. Aquat Bot 120(Part B):346–351. doi:10.1016/j.aquabot.2014.10.004

    Article  CAS  Google Scholar 

  • Ross M, Ruiz P, Telesnicki G, Meeder J (2001) Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (U.S.a.). Wetl Ecol Manag 9(1):27–37. doi:10.1023/a:1008411103288

    Article  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Springer, Berlin

    Book  Google Scholar 

  • Saintilan N (1997a) Above- and below-ground biomass of mangroves in a sub-tropical estuary. Mar Freshw Res 48(7):601–604. doi:10.1071/MF97009

    Article  Google Scholar 

  • Saintilan N (1997b) Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, new South Wales. Mar Freshw Res 48(2):147–152. doi:10.1071/MF96079

    Article  CAS  Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20(1):147–157. doi:10.1111/gcb.12341

    Article  PubMed  Google Scholar 

  • Santini NS, Schmitz N, Lovelock CE (2012) Variation in wood density and anatomy in a widespread mangrove species. Trees 26(5):1555–1563. doi:10.1007/s00468-012-0729-0

    Article  Google Scholar 

  • Schwendenmann L, Mitchell ND (2014) Carbon accumulation by native trees and soils in an urban park, Auckland. N Z J Ecol 38(2):213–220

    Google Scholar 

  • Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64(1):209–210. doi:10.2307/1937343

    Article  Google Scholar 

  • Stokes, D.J. (2010). The physical and ecological impacts of mangrove expansion and mangrove removal: Tauranga Harbour, New Zealand. PhD Thesis. University of Waikato

  • Tam N, Wong Y, Lan C, Chen G (1995) Community structure and standing crop biomass of a mangrove forest in Futian nature reserve, Shenzhen, China. Hydrobiologia 295(1–3):193–201

    Article  Google Scholar 

  • Thakur, B. (2012). Mangrove nutrition along environmental gradients, firth of Thames. Unpublished MSc thesis. University of Auckland

  • Thrush SF, Hewitt JE, Cummings VJ, Ellis JI, Hatton C, Lohrer A, et al. (2004) Muddy waters: elevating sediment input to coastal and estuarine habitats. Front Ecol Environ 2(6):299–306. doi:10.2307/3868405

    Article  Google Scholar 

  • Woodroffe CD (1985) Studies of a mangrove basin, tuff crater, New Zealand: I. Mangrove biomass and production of detritus. Estuar Coast Shelf Sci 20(3):265–280. doi:10.1016/0272-7714(85)90042-3

    Article  Google Scholar 

  • Yando ES, Osland MJ, Willis JM, Day RH, Krauss KW, Hester MW (2016) Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. J Ecol 104(4):1020–1031. doi:10.1111/1365-2745.12571

    Article  CAS  Google Scholar 

  • Zhang Q, Wang C, Wang X, Quan X (2009) Carbon concentration variability of 10 Chinese temperate tree species. For Ecol Manag 258(5):722–727. doi:10.1016/j.foreco.2009.05.009

    Article  Google Scholar 

Download references

Acknowledgments

We thank the University of Auckland staff and students for field and laboratory assistance. We would also like to acknowledge NIWA Freshwater and Estuaries Centre core funding for this project (project #FWEH1402 and FWEH1502, “Mangrove ecosystem services”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Bulmer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s13157-017-0893-5.

Electronic supplementary material

Supplementary Table 1

Tree characteristics of each sampled tree used to develop the allometric equations for Avicennia marina subsp. Australasica. nd = no data, W = Whangamata, T = Tairua. (DOCX 28 kb)

Supplementary Table 2

Allometric equations for temperate Avicennia marina subsp. Australasica for different tree biomass components and carbon and nitrogen stocks (DOCX 39 kb)

Supplementary Figure 1

Images of single stem mangroves (Avicennia marina) in New Zealand, near their southern range limit. Clockwise from bottom left, example individual from 0.5–1 m size class, 1–1.5 m size class, 1.5–2.5 m size class, and >2.5 m size class. (JPEG 3912 kb)

Supplementary Figure 2

Map of Northern New Zealand showing location of study sites. Dashed lines indicate the southern boundary of Avicennia marina distribution in New Zealand. (JPEG 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulmer, R.H., Schwendenmann, L. & Lundquist, C.J. Allometric Models for Estimating Aboveground Biomass, Carbon and Nitrogen Stocks in Temperate Avicennia marina Forests. Wetlands 36, 841–848 (2016). https://doi.org/10.1007/s13157-016-0793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0793-0

Keywords

Navigation