Skip to main content
Log in

Transcriptome analysis of the Antarctic psychrotrophic bacterium Psychrobacter sp. G in response to temperature stress

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The key functional genes involved in temperature adaption of the Antarctic psychrotrophic bacterium Psychrobacter sp. G. were identified by transcriptomic sequencing. We analyzed the global transcriptional profile of Psychrobacter sp. G under cold stress (0°C) and heat stress (30°C), with the optimal growth temperature 20°C as the control. There were large alterations of the transcriptome profile, including significant upregulation of 11 and 12 transcripts as well as significant downregulation of 47 and 42 transcripts in the cold and heat stress groups, respectively, compared to the control. The expression of various genes encoding enzymes and transcriptional regulators, including PfpI and TetR family transcriptional regulators under heat stress, as well as the expression of DEAD/DEAH box helicase and the IclR family of transcriptional regulators under cold stress, were upregulated significantly. The expression of several genes, most affiliated with TonB-dependent receptor and siderophore receptor, was downregulated significantly under both heat and cold stress. Many of the genes associated with the metabolism of fatty acid and ABC transporters were regulated differentially under different temperature stress. The results of this survey of transcriptome and temperature stress-relevant genes contribute to our understanding of the stress-resistant mechanism in Antarctic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashbuner M, Blake J A, Botstein D, et al. 2000. Gene ontology: tool for the unification of biology. Nature Genetics, 25: 25–29

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4): 1165–1188

    Article  Google Scholar 

  • Bhattacharya C, Wang Xiaolei, Becker D. 2012. The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced melanomas. Molecular Cancer, 11 (1): 82

    Article  Google Scholar 

  • Campanaro S, Williams T J, Burg D W, et al. 2011. Temperature-dependent global gene expression in the antarctic archaeon Methanococcoides burtonii. Environmental Microbiology, 13(8): 2018–2038

    Article  Google Scholar 

  • Che Shuai, Song Weizhi, Lin Xuezheng. 2013a. Response of heatshock protein (HSP) genes to temperature and salinity stress in the Antarctic psychrotrophic bacterium Psychrobacter sp. G. Current Microbiology, 67(5): 601–608

    Article  Google Scholar 

  • Che Shuai, Song Lai, Song Weizhi, et al. 2013b. Complete genome sequence of Antarctic bacterium Psychrobacter sp. strain G. Genome Announcements, 1(5): e00725–13

    Google Scholar 

  • Clark M S, Fraser K P P, Burns G, et al. 2008a. The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biology, 31(2): 171–180

    Article  Google Scholar 

  • Clark M S, Fraser K P P, Peck L S. 2008b. Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress and Chaperones, 13(1): 39–49

    Article  Google Scholar 

  • Clark M S, Fraser K P P, Peck L S. 2008c. Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biology, 31(9): 1059–1065

    Article  Google Scholar 

  • Cornelis P, Bodilis J. 2009. A survey of TonB-dependent receptors in fluorescent pseudomonads. Environmental Microbiology Reports, 1(4): 256–262

    Article  Google Scholar 

  • Etchegaray J P, Jones P G, Inouye M. 1996. Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli. Genes to Cells, 1(2): 171–178

    Article  Google Scholar 

  • Feller G, Gerday C. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 1(3): 200–208

    Article  Google Scholar 

  • Ferenci T, Spira B. 2007. Variation in stress responses within a bacterial species and the indirect costs of stress resistance. Annals of the New York Academy of Sciences, 1113: 105–113

    Article  Google Scholar 

  • Filiatrault M J, Stodghill P V, Bronstein P A, et al. 2010. Transcriptome analysis of Pseudomonas syringae identifies new genes, Noncoding RNAs, and antisense activity. Journal of Bacteriology, 192(9): 2359–2372

    Article  Google Scholar 

  • Folschweiller N, Schalk I J, Celia H, et al. 2000. The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa (Review). Molecular Membrane Biology, 17(3): 123–133

    Article  Google Scholar 

  • Fonseca P, Moreno R, Rojo F, et al. 2011. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environmental Microbiology Reports, 3(3): 329–339

    Article  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends in Biotechnology, 18(3): 103–107

    Article  Google Scholar 

  • Hartke A, Frère J, Boutibonnes P, et al. 1997. Differential induction of the chaperonin GroEL and the Co-Chaperonin GroES by heat, acid, and UV-irradiation in Lactococcus lactis subsp. Lactis. Current Microbiology, 34(1): 23–26

    Article  Google Scholar 

  • Hesami S, Metcalf D S, Lumsden J S, et al. 2011. Identification of coldtemperature-regulated Genes in Flavobacterium psychrophilum. Applied and Environmental Microbiology, 77(5): 1593–1600

    Article  Google Scholar 

  • Hofmann G E, Buckley B A, Airaksinen S, et al. 2000. Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae). Journal of Experimental Biology, 203(15): 2331–2339

    Google Scholar 

  • Huang Weichun, Marth G. 2008. EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Research, 18(9): 1538–1543

    Article  Google Scholar 

  • Li Jinsong, Bi Yuntian, Dong Cheng, et al. 2011. Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus. PLoS One, 6(10): e25777

    Article  Google Scholar 

  • Li Bo, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12 (1): 323

    Article  Google Scholar 

  • Lin Xuezheng, Cui Shuoshuo, Xu Guoying, et al. 2010. Cloning and heterologous expression of two cold-active lipases from the Antarctic bacterium Psychrobacter sp. G. Polar Research, 29(3): 421–429

    Article  Google Scholar 

  • Liu Shenghao, Wang Nengfei, Zhang Pengying, et al. 2013. Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss. Extremophiles, 17(3): 391–403

    Article  Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–CT method. Methods, 25(4): 402–408

    Article  Google Scholar 

  • Pearce D A. 2008. Climate change and the microbiology of the Antarctic Peninsula region. Science Progress, 91(2): 203–217

    Article  Google Scholar 

  • Place S P, Hofmann G. 2005. Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Polar Biology, 28(4): 261–267

    Article  Google Scholar 

  • Place S P, Zippay M L, Hofmann G E. 2004. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. American Journal of Physiology, 282(2): R429–R436

    Google Scholar 

  • Ramos J L, Martínez- Bueno M, Molina-Henares A J, et al. 2005. The TetR family of transcriptional repressors. Microbiology and Molecular Biology Reviews, 69(2): 326–356

    Article  Google Scholar 

  • Roberta R. 2010. Molecular adaptations in Antarctic fish and bacteria. Polar Science, 4(2): 245–256

    Article  Google Scholar 

  • Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140

    Article  Google Scholar 

  • Rodríguez-Rojas A, Blázquez J. 2009. The Pseudomonas aeruginosa pfpI gene plays an antimutator role and provides general stress protection. Journal of Bacteriology, 191(3): 844–850

    Article  Google Scholar 

  • Ryabova N, Marchenkov V, Kotova N, et al. 2014. Chaperonin GroEL reassembly: an effect of protein ligands and solvent composition. Biomolecules, 4(2): 458–473

    Article  Google Scholar 

  • Schuster S C. 2008. Next-generation sequencing transforms today’s biology. Nature Methods, 5(1): 16–18

    Article  Google Scholar 

  • Sharma C M, Hoffmann S, Darfeuille F, et al. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature, 464(7286): 250–255

    Article  Google Scholar 

  • Shimizu T, Nakamura A. 2014. Characterization of LgnR an IclR family transcriptional regulator involved in the regulation of Lgluconate catabolic genes in Paracoccus sp. 43P. Microbiology, 160(3): 623–634

    Article  Google Scholar 

  • Simpson W, Olczak T, Genco C A. 2000. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. Journal of Bacteriology, 182(20): 5737–5748

    Article  Google Scholar 

  • Song Weizhi, Lin Xuezheng, Huang Xiaohang. 2012. Characterization and expression analysis of three cold shock protein (CSP) genes under different stress conditions in the Antarctic bacterium Psychrobacter sp. G. Polar Biology, 35(10): 1515–1524

    Article  Google Scholar 

  • Suresh K P, Ghosh M, Pulicherla K K, et al. 2011. Cold active enzymes from the marine psychrophiles: biotechnological perspective. Advanced Biotech, 10(9): 16–20

    Google Scholar 

  • Thorne M A S, Burns G, Fraser K P P, et al. 2010. Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Marine Genomics, 3(1): 35–44

    Article  Google Scholar 

  • Turner J, Colwell S R, Marshall G J, et al. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25(3): 279–294

    Article  Google Scholar 

  • Wang Jing, Huang Lei, Lu Yimei, et al. 2011. Research on fatty acid compositions of three species of marine bacteria. Periodical of Ocean University of China (in Chinese), 41(S): 252–258

    Google Scholar 

  • Zeng Yinxin, Chen Bo. 1999. Progress and application prospects in the study on Antarctic cold-adapted microorganisms. Chinese Journal of Polar Research (in Chinese), 11(2): 143–152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezheng Lin.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41176174; the Chinese Polar Environment Comprehensive Investigation and Assessment Program under contract No. CHINARE 2014-03-05; the Public Science and Technology Funds for Ocean Projects under contract No. 201205020-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, Y. & Lin, X. Transcriptome analysis of the Antarctic psychrotrophic bacterium Psychrobacter sp. G in response to temperature stress. Acta Oceanol. Sin. 36, 78–87 (2017). https://doi.org/10.1007/s13131-016-0956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0956-0

Keywords

Navigation