Skip to main content
Log in

Unravelling the transcriptome response of Enterobacter sp. S-33 under varying temperature

  • Brief Report
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Enterobacter genus includes the bacteria occupying every aspect of environment, however, their adaptability at varying temperature is not clear. In the present study, we analyzed the transcriptome response of Enterobacter sp. S-33 and their functional genes under various temperatures (30–45 ℃) that were expressed and accumulated in cells under temperature-stress. During a temperature shift from 37 to 45 ℃, 165 genes showed differential expression including 112 up-regulated and 53 down-regulated. In particular, heat-shock genes such as CspA, 16 kDa heat shock protein A/B and transcriptional regulators such as LysR, TetR, and LuxR were differentially expressed, indicating the role of complex molecular mechanism of Enterobacter adapting to temperature stress. Similarly, genes associated to signal transduction, ABC transporters, iron homeostasis, and quorum sensing were also induced. The Gene ontology enrichment analysis of differentially expressed genes (DEGs) were categorized into “transmembrane transport”, “tRNA binding”, “hydrogen sulfide biosynthetic process” and “sulfate assimilation” terms. In addition, Kyoto Encyclopedia of Genes and Genomes pathways showed that ABC transporter as well as quorum sensing pathways were significantly enriched. Overall, current study has contributed to explore the adaptive molecular mechanisms of Enterobacter spp. upon temperature change, which further opens new avenues for future in-depth functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam A, Bröms JE, Kumar R, Sjöstedt A (2021) The role of ClpB in bacterial stress responses and virulence. Front Mol Biosci 8:668910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KL, Roberts C, Disz T et al (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azizoglu RO, Osborne J, Wilson S, Kathariou S (2009) Role of growth temperature in freeze-thaw tolerance of Listeria spp. Appl Environ Microbiol 75:5315–5320

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Bassi R, Rudyk O, Burgoyne J, Eaton P, Marber MS (2014) 3 can redoxsensitive cysteines in P38A-MAPK modulate activation during stress? Heart 100(Suppl. 1):3–12. https://doi.org/10.1136/heartjnl-2013-305297.3

    Article  Google Scholar 

  • Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6(1):26717

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chastanet A, Derre I, Nair S (2004) Msadek T (2004) clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 186:1165–1174. https://doi.org/10.1128/jb.186.4.1165-1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derr P, Boder E, Goulian M (2006) Changing the specificity of a bacterial chemoreceptor. J Mol Biol 355:923–932. https://doi.org/10.1016/j.jmb.2005.11.025

    Article  CAS  PubMed  Google Scholar 

  • Dons L, Eriksson E, Jin Y et al (2004) Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence. Infect Immun 72:3237–3244. https://doi.org/10.1128/IAI.72.6.3237-3244.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Ferenci T, Spira B (2007) Variation in stress responses within a bacterial species and the indirect costs of stress resistance. Ann N Y Acad Sci 1113:105–113

    Article  CAS  PubMed  ADS  Google Scholar 

  • Filiatrault MJ, Stodghill PV, Bronstein PA et al (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192(9):2359–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Wang Y, Liu X et al (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186:7796–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomide ACP, de Sa PG, Cavalcante ALQ et al (2018) Heat shock stress: profile of differential expression in Corynebacterium pseudotuberculosis biovar Equi. Gene 645:124–130

    Article  CAS  PubMed  Google Scholar 

  • Grimminger V, Richter K, Imhof A, Buchner J, Walter S (2004) The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J Biol Chem 279:7378–7383. https://doi.org/10.1074/jbc.M312403200

    Article  CAS  PubMed  Google Scholar 

  • Gross CA (1996) Function and regulation of the heat shock proteins. In: Neidhardt FC (ed) Escherichia coli and Salmonella. ASM Press, Washington, DC, pp 1382–1399

  • Gross CA, Chan C, Dombroski A, Gruber T, Sharp M, Tupy J, Young B (1998) The functional and regulatory roles of sigma factors in transcription. In: Cold Spring Harbor symposia on quantitative biology 63:141–156

  • Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65(7):3100–3107

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19. https://doi.org/10.1016/j.tibs.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki L, Olivia S, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Li JS, Bi YT, Dong C, Yang JF, Liang WD (2011) Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus. PLoS ONE 6(10):e25777

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • López-Leal G, Tabche ML, Castillo-Ramírez S, Mendoza-Vargas A, Ramírez-Romero MA, Dávila G (2014) RNA-Seq analysis of the multipartite genome of Rhizobium etli CE3 shows different replicon contributions under heat and saline shock. BMC Genom 15:770

    Article  Google Scholar 

  • Luders S, Fallet C, Franco-Lara E (2009) Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Mereghetti L, Sitkiewicz I, Green NM, Musser JM (2008) Remodelling of the Streptococcus agalactiae transcriptome in response to growth temperature. PLoS ONE 3:e2785

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (1990) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  Google Scholar 

  • Nilsson JF, Castellani LG, Draghi WO et al (2021) Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress. FEMS Microbiol Ecol 97(1):fiaa235

    Article  CAS  Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180

    Article  CAS  PubMed  Google Scholar 

  • Pinto AC, de Sa PHCG, Ramos RTJ et al (2014) Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 15:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opini Microbiol 12:11–17

    Article  CAS  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    Article  CAS  PubMed  Google Scholar 

  • Rudenko I, Ni B, Glatter T, Sourjik V (2019) Inefficient secretion of anti-sigma factor FlgM inhibits bacterial motility at high temperature. Iscience 16:145–154

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Shannon W, Culverhouse R, Duncan J (2003) Analyzing microarray data using cluster analysis. Pharmacogenomics 4(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255

    Article  CAS  PubMed  ADS  Google Scholar 

  • Shrivastava S, Mande SS (2008) Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS ONE 3:e2955

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Sieuwerts S, Molenaar D, van Hijum SAFT et al (2010) Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol 76(23):7775–7784. https://doi.org/10.1128/AEM.01122-10

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185:2009–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viveiros M, Jesus A, Brito M et al (2005) Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob Agents Chemother 49(8):3578–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W (2012) RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in Cyanobacterial synechocystis sp. PCC 6803. Biotechnol Biofuels 5:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber MH, Marahiel MA (2002) Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci 357:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woufers JA, Sander J-W, Kok J, de Vos WM, Kuipers OP, Abee T (1998) Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MGl363. Microbiology 144:2885–2893

    Article  PubMed  Google Scholar 

  • Xue D, Liu W, Chen Y et al (2019) RNA-Seq-based comparative transcriptome analysis highlights new features of the heat-stress response in the extremophilic bacterium Deinococcus radiodurans. Int J Mol Sci 20(22):5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RPS acknowledges the Department of Biotechnology, Government of India for providing the Ramalingaswami Re-entry Fellowship.

Funding

The work was supported by the Ramalingaswami Re-entry Grant provided by Government of India.

Author information

Authors and Affiliations

Authors

Contributions

KK analysed the data. PKS did the gene network analysis. RPS wrote the manuscript and supervised the work.

Corresponding author

Correspondence to Rajnish Prakash Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent participate

Not applicable.

Animal ethics

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Sharma, P.K. & Singh, R.P. Unravelling the transcriptome response of Enterobacter sp. S-33 under varying temperature. Arch Microbiol 206, 81 (2024). https://doi.org/10.1007/s00203-023-03792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03792-6

Keywords

Navigation