Skip to main content
Log in

Interactive 3D anatomy and affinities of the Hyalogyrinidae, basal Heterobranchia (Gastropoda) with a rhipidoglossate radula

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Whereas Hyalogyrina Marshall, 1988 was originally considered a skeneid vetigastropod, the family Hyalogyrinidae Warén & Bouchet, 1993 has later been classified as basal Heterobranchia despite their rhipidoglossate radula. In order to evaluate this placement and to shed more light on the origin of all higher Gastropoda, we investigated five representatives of all three nominal hyalogyrinid genera by means of semithin serial sectioning and computer-aided 3D reconstruction of the respective anatomy, which we present in an interactive way. In general the morphological features (shell, external morphology, anatomy) fully confirm the placement of Hyalogyrinidae in the Heterobranchia, but in particular the conditions of the genital system vary substantially within the family. The ectobranch gill of Hyalogyrinidae is shared with Valvatidae, Cornirostridae, and Xylodisculidae; consequently all these families are united in Ectobranchia Fischer, 1884. The rhipidoglossate hyalogyrinid radula suggests independent acquisition of taenioglossate radulae in the Caenogastropoda and other Ectobranchia. Therefore, the origin of the Heterobranchia—and thus of all higher gastropods—looks to have taken place already on the rhipidoglossate, i.e. the ‘archaeogastropod’, level of evolution. Ectobranchia are considered the first extant offshoot of the Heterobranchia; implications for the stem species of the latter are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Aktipis, S. H., Giribet, G., Lindberg, D. R., & Ponder, W. F. (2008). Gastropoda. In W. F. Ponder & D. R. Lindberg (Eds.), Phylogeny and evolution of the Mollusca (pp. 199–236). Berkeley: University of California Press.

    Google Scholar 

  • Bandel, K. (1982). Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies (Erlangen), 7, 1–198. pls. 1–22.

    Article  Google Scholar 

  • Bandel, K. (1991). Gastropods from brackish and fresh water of the Jurassic-Cretaceous transition (a systematic reevaluation). Berliner Geowissenschaftliche Abhandlungen, (A), 134, 9–55.

    Google Scholar 

  • Bandel, K. (1996). Some heterostrophic gastropods from Triassic St. Cassian formation with a discussion on the classification of the Allogastropoda. Paläontologische Zeitschrift, 70, 325–365.

    Google Scholar 

  • Bandel, K., & Heidelberger, D. (2002). A Devonian member of the subclass Heterostropha (Gastropoda) with valvatoid shell shape. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 2002(9), 503–550.

    Google Scholar 

  • Bäumler, N., Haszprunar, G., & Ruthensteiner, B. (2008). 3D interactive microanatomy of Omalogyra atomus (Philippi, 1841) (Gastropoda, Heterobranchia, Omalogyridae). In D. Geiger, & B. Ruthensteiner (Eds.) Micromolluscs: Methodological challenges – exciting results. Zoosymposia, 1, 108–116.

  • Bernard, F. (1890). Recherches sur Valvata piscinalis. Bulletin Scientifique de la France et de la Belgique, 22, 253–361. pls. 12–20.

    Google Scholar 

  • Bieler, R., Ball, A. D., & Mikkelsen, P. M. (1998). Marine Valvatoidea – Comments on anatomy and systematics with description of a new species from Florida (Heterobranchia: Cornirostridae). Malacologia, 40, 305–320.

    Google Scholar 

  • Clare, A. S. (1987). Studies on the juxtaganglionar organ of trochids. In H. H. Boer, W. P. M. Geraerts, & J. Joosse (Eds.), Neurobiology: Molluscan models. Proceedings of the 2nd symposium on molluscan neurobiology, Amsterdam 1986 (pp. 342–349). Amsterdam: North Holland Publ. Comp.

    Google Scholar 

  • Cleland, D. M. (1954). A study of the habits of Valvata piscinalis (Müller) and the structure and function of the alimentary canal and reproductive system. Proceedings of the Malacological Society of London, 30, 167–203.

    Google Scholar 

  • Colgan, D. J., Ponder, W. F., Beacham, E., & Macaranas, J. M. (2003). Gastropod phylogeny based on six segments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Research, 23, 123–148.

    Article  CAS  Google Scholar 

  • Dayrat, B., & Tillier, S. (2003). Molecular systematics of the major lineages of the Gastropoda. In C. Lydeard & D. R. Lindberg (Eds.), Molecular systematics and phylogeography of mollusks (pp. 161–184). Washington & London: Smithsonian Series on Evolutionary Biology. Smithsonian Books.

    Google Scholar 

  • Dinapoli, A., & Klussmann-Kolb, A. (2010). The long way to diversity – Phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Molecular Phylogeny and Evolution, 55, 60–76.

    Article  Google Scholar 

  • Falniowski, A. (1989). A critical review of some characters widely used in the systematics of higher taxa of freshwater prosobranchs (Gastropoda: Prosobranchia), and a proposal of some new, ultrastructural ones. Folia Malacologica (Kraków), 3(1216), 73–94.

    Google Scholar 

  • Falniowski, A. (1990). Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): a comparative usefulness study. Folia Malacologica (Kraków), 4(1276), 53–142.

    Google Scholar 

  • Fechter, R., & Falkner, G. (1990). Weichtiere. Europäische Meeres- und Binnenmollusken. München: Mosaik Verlag.

    Google Scholar 

  • Fischer, P. (1880–1887). Manuel de conchyliologie et de paléontologie conchyliologique. Paris: Savy. [Fascicule 7 with pp. 609–688 published 30 June 1884.]

  • Fretter, V. (1948). The structure and life history of some minute prosobranchs of rock pools: Skeneopsis planorbis (Fabricius), Omalogyra atomus (Philippi), Rissoella diapha (Alder) and Rissoella opalina (Jeffreys). Journal of the Marine Biological Association of the UK, 27, 597–632.

    Article  Google Scholar 

  • Furrow, C. L. (1935). Development of the hermaphroditic genital organs of Valvata. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 22, 282–304.

    Article  Google Scholar 

  • Garnault, P. (1890). Les organes reproducteurs de la Valvata piscinalis. Bulletin Scientifique de la France et de la Belgique, 22, 496–507. pl. 26.

    Google Scholar 

  • Grande, C., Templado, J., & Zardoya, R. (2008). Evolution of gastropod mitochondrial genome arrangements. BMC Evolutionary Biology, 8(61), 1–15.

    Google Scholar 

  • Hadfield, M. G., & Strathmann, M. F. (1990). Heterostrophic shells and pelagic development in trochoideans: implications for classification, phylogeny and palaeoecology. Journal of Molluscan Studies, 56, 239–256.

    Article  Google Scholar 

  • Hartmann, H., Heß, M., & Haszprunar, G. (2011). Interactive 3D anatomy and affinities of Bathysciadiidae (Gastropoda, Cocculinoidea): deep-sea limpets feeding on decaying cephalopod beaks. Journal of Morphology, 272, 259–279.

    Article  PubMed  Google Scholar 

  • Hasegawa, K. (1997). Sunken wood-associated gastropods from Suruga Bay, Pacific side of the central Honshu, Japan, with description of 12 new species. National Science Museum Monographs, 12, 59–123.

    Google Scholar 

  • Haszprunar, G. (1985a). The Heterobranchia – a new concept of the phylogeny of the higher Gastropoda. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 23, 15–37.

    Article  Google Scholar 

  • Haszprunar, G. (1985b). Zur Anatomie und systematischen Stellung der Architectonicidae (Mollusca, Allogastropoda). Zoologica Scripta, 14, 25–43.

    Article  Google Scholar 

  • Haszprunar, G. (1985c). On the anatomy and systematic position of the Mathildidae (Mollusca, Allogastropoda). Zoologica Scripta, 14, 201–213.

    Article  Google Scholar 

  • Haszprunar, G. (1988). On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies, 54, 367–441.

    Article  Google Scholar 

  • Haszprunar, G. (1996). The molluscan rhogocyte (pore-cell, Blasenzelle, cellule nucale), and its significance for ideas on nephridial evolution. Journal of Molluscan Studies, 62, 185–211.

    Article  Google Scholar 

  • Healy, J. M. (1990). Spermatozoa and spermiogenesis of Cornirostra, Valvata and Orbitestella (Gastropoda, Heterobranchia) with a discussion on valvatoidean sperm morphology. Journal of Molluscan Studies, 56, 557–566.

    Article  Google Scholar 

  • Healy, J. M. (1993). Comparative sperm ultrastructure and spermiogenesis in basal heterobranch gastropods (Valvatoidea, Architectonicoidea, Rissoelloidea, Omalogyroidea, Pyramidelloidea). Zoologica Scripta, 22, 263–276.

    Article  Google Scholar 

  • Hedegaard, C. (1990). Shell structure of the Recent Archaeogastropoda. PhD thesis. Aarhus, Denmark: University of Aarhus.

  • Herbert, D. G. (1982). Fine structural observations on the juxtaganglionar organ of Gibbula umbilicalis (Da Costa). Journal of Mollusan Studies, 48, 226–228.

    Google Scholar 

  • Heß, M., Beck, F., Gensler, H., Kano, Y., Kiel, S., & Haszprunar, G. (2008). Microanatomy, shell structure and molecular phylogeny of Leptogyra, Xyleptogyra and Leptogyropsis (Gastropoda: Neomphalida: Melanodrymiidae) from sunken wood. Journal of Molluscan Studies, 74, 383–401.

    Article  Google Scholar 

  • Høisaeter, T., & Johannessen, P. J. (2002). Xylodiscula planata sp. nov., a “lower” heterobranch gastropod from Norwegian waters. Sarsia, 86, 325–332.

    Google Scholar 

  • Jamieson, B. G. M. (1987). A biological classification of sperm types, with special reference to annelids and molluscs, and an example of spermiocladistics. In H. Mohri (Ed.), New horizons in sperm cell research (pp. 311–332). Tokyo: Japan Scientific Society Press.

    Google Scholar 

  • Johansson, J. (1956). Garnault’s duct and its significance for the phylogeny of the genital system of Valvata. Zoologiska Bidrag från Uppsala, 30, 457–464. pls. 1–2.

    Google Scholar 

  • Jörger, K. M., Stöger, I., Kano, Y., Fukuda, H., Knebelsberger, T., & Schrödl, M. (2010). On the origin of Acochlidia and other enigmatic euthyneuran gastropods and implications for the systematics of Heterobranchia. BMC Evolutionary Biology, 10(323), 1–20.

    Google Scholar 

  • Kruglow, N. D., & Frolenkova, O. A. (1981). Structure of egg-clutches in molluscs of the family Valvatidae (Pectinibranchia, Ectobranchia). [In Russian, with English abstract.] Vestnik Leningradskogo Gosudarstvennogo Universiteta Biologichesky, 1981(1), 52–58.

  • Kunze, T., & Haszprunar, G. (2008). What are skeneimorph gastropods? – How 3D based anatomy can help to shed some light on the polyphyletic assemblage called Skeneidae. The Malacologist, 52, 6–7.

    Google Scholar 

  • Lindholm, W. A. (1927). Valvata naticina Menke und ihr Formenkreis. Archiv für Molluskenkunde, 59, 20–33.

    Google Scholar 

  • Luchtel, D. L., Martin, A. W., Deyrup-Olsen, I., & Boer, H. H. (1997). Gastropoda: Pulmonata. In F. W. Harrison & A. J. Kohn (Eds.), Microscopic anatomy of invertebrates, vol. 6B: Mollusca II (pp. 459–718). New York: Wiley-Liss.

    Google Scholar 

  • Marshall, B. A. (1988). Skeneidae, Vitrinellidae and Orbitestellidae (Mollusca, Gastropoda) associated with biogenic substrata from bathyal depths off New Zealand and New South Wales. Journal of Natural History, 22, 969–1004.

    Article  Google Scholar 

  • Marshall, D. J., & Hodgson, A. N. (1990). Structure of the cephalic tentacles of some species of prosobranch limpets (Patellidae and Fissurellidae). Journal of Molluscan Studies, 56, 415–424.

    Article  Google Scholar 

  • Martoja, M. (1965a). Existence d’un organe juxta-ganglionaire chez Aplysia punctata Cuv. (Gastéropode Opisthobranche). Comptes Rendus de l’Academie des Sciences, Paris, 260, 4615–4617.

    CAS  Google Scholar 

  • Martoja, M. (1965b). Données relatives à l’organe juxta-ganglionaire des Prosobranches Diotocardes. Comptes Rendus de l’Academie des Sciences, Paris, 261, 3195–3196.

    Google Scholar 

  • McArthur, A. G., & Harasewych, M. G. (2003). Molecular systematics of the major lineages of the Gastropoda. In C. Lydeard & D. R. Lindberg (Eds.), Molecular systematics and phylogeography of mollusks (pp. 140–160). Washington & London: Smithsonian Series on Evolutionary Biology. Smithsonian Books.

    Google Scholar 

  • Monterosato, T. A. (1874). Recherches conchyliologiques, effectuées au Cap Santo Vito, en Sicilie. Journal de Conchyliologie (Paris), 14, 243–282.

    Google Scholar 

  • Ponder, W. F. (1990a). The anatomy and relationships of the Orbitestellidae (Gastropoda: Heterobranchia). Journal of Molluscan Studies, 56, 515–532.

    Article  Google Scholar 

  • Ponder, W. F. (1990b). The anatomy and relationships of a marine valvatoidean (Gastropoda: Heterobranchia). Journal of Molluscan Studies, 56, 533–556.

    Article  Google Scholar 

  • Ponder, W. F. (1991a). Marine valvatoidean gastropods – implication for early heterobranch phylogeny. Journal of Molluscan Studies, 57, 21–32.

    Article  Google Scholar 

  • Ponder, W. F. (1991b). The anatomy of Diala, with an assessment of its taxonomic position (Mollusca: Cerithioidea). In F. E. Wells, D. I. Walker, H. Kirkman, & R. Lethbridge (Eds.), The marine flora and fauna of Albany, Western Australia, vol. 2 (pp. 500–519). Perth: Western Australian Museum.

    Google Scholar 

  • Ponder, W. F., & Lindberg, D. R. (1997). Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society, 119, 83–265.

    Article  Google Scholar 

  • Rath, E. (1986). Beiträge zur Anatomie und Ontogenie der Valvatidae (Mollusca: Gastropoda). Unpublished dissertation. Vienna, Austria: Institut für Zoologie der Universität Wien.

  • Rath, E. (1988). Organization and systematic position of the Valvatidae. Malacological Review, Supplement, 4, 194–204.

    Google Scholar 

  • Richardson, K. C., Jarett, L., & Finke, E. H. (1960). Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology, 35, 313–323.

    PubMed  CAS  Google Scholar 

  • Robertson, R. (1985). Four characters and the higher category systematics of gastropods. American Malacological Bulletin, Special Edition, 1, 1–22.

    Google Scholar 

  • Robertson, R. (1993). Snail handedness. The coiling directions of gastropods. National Geographic Research and Exploration, 9, 104–119.

    Google Scholar 

  • Romeis, B. (1989). Mikroskopische Technik, 17th edition [Böck, P. (Ed.)]. Munich, etc.: Urban & Schwarzenberg.

  • Rubio, F., Rolan, E., & Fernandes, F. (1992). Nueva especie de Hyalogyra (Archaeogastropoda: Skeneidae) procedente de la costa occidental Africana. Bollettino di Malacologico, 28, 145–148.

    Google Scholar 

  • Ruthensteiner, B. (2008). Soft part 3D visualization by serial sectioning and computer reconstruction. In D. Geiger, & B. Ruthensteiner (Eds.), Micromolluscs: methodological challenges – exciting results. Zoosymposia, 1, 63–100.

  • Ruthensteiner, B., & Heß, M. (2008). Embedding 3D models of biological specimens in PDF publications. Microscopy Research and Technique, 71, 778–786.

    Article  PubMed  Google Scholar 

  • Sahling, H., Rickert, D., Lee, R. W., Linke, P., & Suess, E. (2002). Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series, 231, 121–138.

    Article  Google Scholar 

  • Salvini-Plawen, L., & Haszprunar, G. (1987). The Vetigastropoda and the systematics of streptoneurous Gastropoda (Mollusca). Journal of Zoology (London), 211, 747–770.

    Google Scholar 

  • Sasaki, T. (1998). Comparative anatomy and phylogeny of the recent Archaeogastropoda (Mollusca: Gastropoda). University and Museum of Tokyo Bulletin, 38, 1–224.

    Google Scholar 

  • Simone, L. R. L. (1995). Rissoella ornata, a new species of Rissoellidae (Mollusca: Gastropoda: Rissoelloidea) from the southeastern coast of Brazil. Proceedings of the Biological Society of Washington, 108, 560–567.

    Google Scholar 

  • Sitnikova, T. Y. (1984). Some aspects of the structure and functioning of the reproductive system of the family Valvatidae (Gastropoda, Pectinibranchia). [In Russian, with English abstract]. Vestnik Leningradskogo Gosudarstvennogo Universiteta Biologichesky, 1984(2), 121–123.

  • Sminia, T., & Boer, H. H. (1973). Haemocyanin production in pore cells of the freshwater snail Lymnaea stagnalis. Zeitschrift für Zellforschung, 145, 443–445.

    Article  CAS  Google Scholar 

  • Sminia, T., De With, N. D., Bos, J. L., Van Nieuwmegen, M. E., Witter, M. P., & Wondergem, J. (1976). Structure and function of the calcium cells of the freshwater pulmonate snail Lymnaea stagnalis. Netherlands Journal of Zoology, 27, 195–208. pls. 1–3.

    Article  Google Scholar 

  • Speimann, E., Heß, M., & Haszprunar, G. (2007). 3D-anatomy of the rhipidoglossate heterobranchs Hyalogyrina depressa Hasegawa, 1997 and Xenoskenea pellucida (Monterosato, 1874) (Gastropoda, Ectobranchia). Abstracts of the World Congress of Malacology, Antwerp, July, 2007, 212–213.

    Google Scholar 

  • Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research, 26, 31–43.

    Article  CAS  Google Scholar 

  • Starmühlner, F. (1952). Zur Anatomie, Histologie und Biologie einheimischer Prosobranchier. Österreichische Zoologische Zeitschrift, 3, 546–590.

    Google Scholar 

  • Switzer-Dunlap, M. F. (1987). Ultrastructure of the juxtaganglionar organ, a putative endocrine gland associated with the cerebral ganglion of Aplysia juliana. International Journal of Invertebrate Reproduction and Development, 11, 295–304.

    Google Scholar 

  • Van den Biggelaar, J. A. M., & Haszprunar, G. (1996). Cleavage patterns in the Gastropoda: an evolutionary approach. Evolution, 50, 1520–1540.

    Article  Google Scholar 

  • Wägele, H., Klussmann-Kolb, A., Vonnemann, V., & Medina, M. (2008). Heterobranchia I. The Opisthobranchia. In W. F. Ponder & D. R. Lindberg (Eds.), Phylogeny and evolution of the Mollusca (pp. 383–406). Berkeley: University of California Press.

    Google Scholar 

  • Warén, A. (1992). New and little known “skeneimorph” gastropods from the Mediterranean Sea and the adjacent Atlantic Ocean. Bollettino di Malacologico (Milano), 27, 149–248.

    Google Scholar 

  • Warén, A., & Bouchet, P. (1993). New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. Zoologica Scripta, 22, 1–90.

    Article  Google Scholar 

  • Warén, A., & Bouchet, P. (2001). Gastropoda and Monoplacophora from hydrothermal vents and seeps; new taxa and records. Zoologica Scripta, 44, 116–231.

    Google Scholar 

  • Warén, A., & Bouchet, P. (2009). New gastropods from deep-sea hydrocarbon seeps off West Africa. Deep-Sea Research II, 56, 2326–2349.

    Article  Google Scholar 

  • Warén, A., Gofas, S., & Schander, C. (1993). Systematic position of three European heterobranch gastropods. Veliger, 36, 1–15.

    Google Scholar 

  • Warén, A., Carozza, F., & Rocchini, R. (1997). Description of two new species of Hyalogyrinidae (Gastropoda, Heterobranchia) from the Mediterranean. Bollettino Malacologico, 32, 57–66.

    Google Scholar 

  • Wise, J. B. (1998). Morphology and systematic position of Rissoella caribaea Rehder, 1943 (Gastropoda: Heterobranchia: Rissoellidae). Nautilus, 111, 13–21.

    Google Scholar 

  • Yonge, C. M. (1947). The pallial organs in the aspidobranch gastropods and their evolution throughout the Mollusca. Philosophical Transactions of the Royal Society of London/B, 232, 443–518. 1 pl.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to all colleagues who added material and data to the present study: the specimens of Xenoskenea pellucida were collected by Dr. Serge Gofas (Universidad de Malaga, Spain) during “Mission Algarve”, a workshop in southern Portugal organised by Dr. Philippe Bouchet (Museum National d’Histoire Naturelle, Paris). Bruce A. Marshall (Museum of New Zealand, Te Papa Tongarewa) kindly provided the specimens of Hyalogyrina glabra and Hyalogyra expansa. Dr. Kazunori Hasegawa (National Museum of Nature and Science, Tsukuba City, Japan) kindly made specimens of Hyalogyrina depressa available to us. Dr. Anders Warén (Naturhistoriska Riksmuseet, Stockholm) sent us material of Hyalogyrina grasslei, provided SEM photos of various hyalogyrinids, and added (as did two anonymous referees) much helpful advice to the draft of this paper. We also acknowledge technical support from Ms. Eva Lodde (ZSM) and Heidemarie Gensler (LMU Munich). Last but not least we thank Dr. Masanori Taru (Toho University, Japan) for providing his beautiful live photo of a new Xenoskenea species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Haszprunar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 2

3D Reconstruction of Xenoskenea pellucida and interactive 3D Model. (PDF 4645 kb)

Figure 7

The interactive 3D-model of Hyaloyrina depressa can be accessed by clicking into Fig. 7 (Adobe Reader Version 7 or higher required). Rotate model by dragging with left mouse button pressed, shift model: same action + ctrl, zoom: use mouse wheel (or change default action for left mouse button). Select or deselect (or change transparency of) components in the model tree, switch between prefab views or change surface visualization (e.g. lightning, render mode, crop etc.). (PDF 6051 kb)

Figure 14

The interactive 3D-model of Hyaloyrina grasslei can be accessed by clicking into Fig. 14 (Adobe Reader Version 7 or higher required). Rotate model by dragging with left mouse button pressed, shift model: same action + ctrl, zoom: use mouse wheel (or change default action for left mouse button). Select or deselect (or change transparency of) components in the model tree, switch between prefab views or change surface visualization (e.g. lightning, render mode, crop etc.). (PDF 4466 kb)

Figure 18

3D Reconstruction of Hyalogyrina glabra and interactive 3D Model. (PDF 5052 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haszprunar, G., Speimann, E., Hawe, A. et al. Interactive 3D anatomy and affinities of the Hyalogyrinidae, basal Heterobranchia (Gastropoda) with a rhipidoglossate radula. Org Divers Evol 11, 201–236 (2011). https://doi.org/10.1007/s13127-011-0048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-011-0048-0

Keywords

Navigation