Skip to main content

Advertisement

Log in

Short-Term Acute Exercise Preconditioning Reduces Neurovascular Injury After Stroke Through Induced eNOS Activation

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Physical exercise is known to reduce cardiovascular risk but its role in ischemic stroke is not clear. It was previously shown that an acute single bout of exercise reduced increased eNOS activation in the heart and reduced myocardial infarction. However, the impact of a single bout or short-term exercise on eNOS-induced neuroprotection after stroke was not previously studied. Accordingly, this study was designed to test the hypothesis that short-term acute exercise can provide “immediate neuroprotection” and improve stroke outcomes through induced eNOS activation. Male Wistar rats (300 g) were subjected to HIIT treadmill exercise for 4 days (25 min/day), break for 2 days, and then one acute bout for 30 min. Exercised animals were subjected to thromboembolic stroke 1 h, 6 h, 24 h, or 72 h after the last exercise session. At 24 h after stroke, control (sedentary) and exercised rats were tested for neurological outcomes, infarct size, and edema. The expression of active eNOS (p-S1177-eNOS) and active AMPK (p-T172-AMPK) was measured in the brain, cerebral vessels, and aorta. In an additional cohort, animals were treated with the eNOS inhibitor, L-NIO (I.P, 20 mg/kg), and stroked 1 h after exercise and compared with non-exercise animals. Acute exercise significantly reduced infarct size, edema, and improved functional outcomes, and significantly increased the expression of peNOS and pAMPK in the brain, cerebral vessels, and aorta. eNOS inhibition abolished the exercise-induced improvement in outcomes. Short-term acute preconditioning exercise reduced the neurovascular injury and improved functional outcomes after stroke through eNOS activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Devlin JT. Effects of exercise on insulin sensitivity in humans. Diabetes Care. 1992;15(11):1690–3.

    CAS  PubMed  Google Scholar 

  2. Henriksson J. Influence of exercise on insulin sensitivity. J Cardiovasc Risk. 1995;2(4):303–9.

    CAS  PubMed  Google Scholar 

  3. Hu FB, Sigal RJ, Rich-Edwards JW, Colditz GA, Solomon CG, Willett WC, et al. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA. 1999;282(15):1433–9.

    CAS  PubMed  Google Scholar 

  4. Laufs U, Wassmann S, Czech T, Munzel T, Eisenhauer M, Bohm M, et al. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(4):809–14.

    CAS  PubMed  Google Scholar 

  5. Wood PD, Stefanick ML, Dreon DM, Frey-Hewitt B, Garay SC, Williams PT, et al. Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. N Engl J Med. 1988;319(18):1173–9.

    CAS  PubMed  Google Scholar 

  6. Thijssen DHJ, Redington A, George KP, Hopman MTE, Jones H. Association of exercise preconditioning with immediate cardioprotection: a review. JAMA Cardiol. 2018;3(2):169–76.

    PubMed  Google Scholar 

  7. Gillum RF, Mussolino ME, Ingram DD. Physical activity and stroke incidence in women and men. The NHANES I epidemiologic follow-up study. Am J Epidemiol. 1996;143(9):860–9.

    CAS  PubMed  Google Scholar 

  8. Stroud N, Mazwi TM, Case LD, Brown RD Jr, Brott TG, Worrall BB, et al. Prestroke physical activity and early functional status after stroke. J Neurol Neurosurg Psychiatry. 2009;80(9):1019–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Abbott RD, Rodriguez BL, Burchfiel CM, Curb JD. Physical activity in older middle-aged men and reduced risk of stroke: the Honolulu Heart Program. Am J Epidemiol. 1994;139(9):881–93.

    CAS  PubMed  Google Scholar 

  10. Lee IM, Paffenbarger RS Jr. Physical activity and stroke incidence: the Harvard Alumni Health Study. Stroke. 1998;29(10):2049–54.

    CAS  PubMed  Google Scholar 

  11. Krarup LH, Truelsen T, Pedersen A, Lerke H, Lindahl M, Hansen L, et al. Level of physical activity in the week preceding an ischemic stroke. Cerebrovasc Dis. 2007;24(2–3):296–300.

    PubMed  Google Scholar 

  12. Lindenstrom E, Boysen G, Nyboe J. Lifestyle factors and risk of cerebrovascular disease in women. The Copenhagen City Heart Study. Stroke. 1993;24(10):1468–72.

    CAS  PubMed  Google Scholar 

  13. Sacco RL, Gan R, Boden-Albala B, Lin IF, Kargman DE, Hauser WA, et al. Leisure-time physical activity and ischemic stroke risk: the Northern Manhattan Stroke Study. Stroke. 1998;29(2):380–7.

    CAS  PubMed  Google Scholar 

  14. Otsuka S, Sakakima H, Sumizono M, Takada S, Terashi T, Yoshida Y. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats. Behav Brain Res. 2016;303:9–18.

    CAS  PubMed  Google Scholar 

  15. Ding YH, Li J, Yao WX, Rafols JA, Clark JC, Ding Y. Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol. 2006;112(1):74–84.

    CAS  PubMed  Google Scholar 

  16. Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004;124(3):583–91.

    CAS  PubMed  Google Scholar 

  17. Matsuda F, Sakakima H, Yoshida Y. The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxford). 2011;201(2):275–87.

    CAS  Google Scholar 

  18. Zhang F, Wu Y, Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience. 2011;177:170–6.

    CAS  PubMed  Google Scholar 

  19. Endres M, Gertz K, Lindauer U, Katchanov J, Schultze J, Schrock H, et al. Mechanisms of stroke protection by physical activity. Ann Neurol. 2003;54(5):582–90.

    PubMed  Google Scholar 

  20. Davis W, Mahale S, Carranza A, Cox B, Hayes K, Jimenez D, et al. Exercise pre-conditioning ameliorates blood-brain barrier dysfunction in stroke by enhancing basal lamina. Neurol Res. 2007;29(4):382–7.

    CAS  PubMed  Google Scholar 

  21. Ding YH, Luan XD, Li J, Rafols JA, Guthinkonda M, Diaz FG, et al. Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res. 2004;1(5):411–20.

    CAS  PubMed  Google Scholar 

  22. Ding YH, Mrizek M, Lai Q, Wu Y, Reyes R Jr, Li J, et al. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study. Curr Neurovasc Res. 2006;3(4):263–71.

    CAS  PubMed  Google Scholar 

  23. Gertz K, Priller J, Kronenberg G, Fink KB, Winter B, Schrock H, et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 2006;99(10):1132–40.

    CAS  PubMed  Google Scholar 

  24. Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, et al. Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience. 2010;166(4):1091–100.

    CAS  PubMed  Google Scholar 

  25. Zhang QJ, McMillin SL, Tanner JM, Palionyte M, Abel ED, Symons JD. Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases. J Physiol. 2009;587(Pt 15):3911–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Siragusa M, Fleming I. The eNOS signalosome and its link to endothelial dysfunction. Pflugers Arch. 2016;468(7):1125–37.

    CAS  PubMed  Google Scholar 

  27. Garcia V, Sessa WC. Endothelial nitric oxide synthase (eNOS): perspective and recent developments. Br J Pharmacol. 2018. https://doi.org/10.1111/bph.14522.

  28. Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res. 2009;32(8):1103–8.

    CAS  PubMed  Google Scholar 

  29. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107(25):3152–8.

    CAS  PubMed  Google Scholar 

  30. Kojda G, Cheng YC, Burchfield J, Harrison DG. Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene. Circulation. 2001;103(23):2839–44.

    CAS  PubMed  Google Scholar 

  31. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342(7):454–60.

    CAS  PubMed  Google Scholar 

  32. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40(6):2244–50.

    PubMed  PubMed Central  Google Scholar 

  33. Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4(3):279–85.

    PubMed  Google Scholar 

  34. Hafez S, Abdelsaid M, Fagan SC, Ergul A. Peroxynitrite-induced tyrosine nitration contributes to matrix metalloproteinase-3 activation: relevance to hyperglycemic ischemic brain injury and tissue plasminogen activator. Neurochem Res. 2018;43(2):259–66.

    CAS  PubMed  Google Scholar 

  35. Hafez S, Hoda MN, Guo X, Johnson MH, Fagan SC, Ergul A. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA. Transl Stroke Res. 2015;6(3):171–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guan W, Kozak A, El-Remessy A, Johnson M, Pillai B, Fagan S. Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl Stroke Res. 2011:1–7.

  37. Ergul A, Elgebaly MM, Middlemore ML, Li W, Elewa H, Switzer JA, et al. Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes. BMC Neurol. 2007;7:33.

    PubMed  PubMed Central  Google Scholar 

  38. Prakash R, Li W, Qu Z, Johnson MA, Fagan SC, Ergul A. Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery. Stroke. 2013;44(10):2875–82.

    PubMed  Google Scholar 

  39. Kelly-Cobbs AI, Prakash R, Li W, Pillai B, Hafez S, Coucha M, et al. Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes. Am J Physiol Heart Circ Physiol. 2013;304(6):H806–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cacicedo JM, Gauthier MS, Lebrasseur NK, Jasuja R, Ruderman NB, Ido Y. Acute exercise activates AMPK and eNOS in the mouse aorta. Am J Physiol Heart Circ Physiol. 2011;301(4):H1255–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hafez S, Abdelsaid M, El-Shafey S, Johnson MH, Fagan SC, Ergul A. Matrix metalloproteinase 3 exacerbates hemorrhagic transformation and worsens functional outcomes in hyperglycemic stroke. Stroke. 2016;47(3):843–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med. 1999;189(11):1699–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Curry A, Guo M, Patel R, Liebelt B, Sprague S, Lai Q, et al. Exercise pre-conditioning reduces brain inflammation in stroke via tumor necrosis factor-alpha, extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-9 activity. Neurol Res. 2010;32(7):756–62.

    CAS  PubMed  Google Scholar 

  44. Ding YH, Ding Y, Li J, Bessert DA, Rafols JA. Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res. 2006;28(2):184–9.

    PubMed  Google Scholar 

  45. Rezaei R, Nasoohi S, Haghparast A, Khodagholi F, Bigdeli MR, Nourshahi M. High intensity exercise preconditioning provides differential protection against brain injury following experimental stroke. Life Sci. 2018;207:30–5.

    CAS  PubMed  Google Scholar 

  46. Lucas SJ, Cotter JD, Brassard P, Bailey DM. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cereb Blood Flow Metab. 2015;35(6):902–11.

    PubMed  PubMed Central  Google Scholar 

  47. Boyne P, Dunning K, Carl D, Gerson M, Khoury J, Kissela B. High-intensity interval training in stroke rehabilitation. Top Stroke Rehabil. 2013;20(4):317–30.

    PubMed  Google Scholar 

  48. Currie KD, Dubberley JB, McKelvie RS, MacDonald MJ. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc. 2013;45(8):1436–42.

    PubMed  Google Scholar 

  49. Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42(7):587–605.

    PubMed  Google Scholar 

  50. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(Pt 6):1011–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wisloff U, Ellingsen O, Kemi OJ. High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev. 2009;37(3):139–46. https://doi.org/10.1097/JES.0b013e3181aa65fc.

    Article  PubMed  Google Scholar 

  52. Brugniaux JV, Marley CJ, Hodson DA, New KJ, Bailey DM. Acute exercise stress reveals cerebrovascular benefits associated with moderate gains in cardiorespiratory fitness. J Cereb Blood Flow Metab. 2014;34(12):1873–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moraine JJ, Lamotte M, Berre J, Niset G, Leduc A, Naeije R. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol. 1993;67(1):35–8.

    CAS  PubMed  Google Scholar 

  54. Subudhi AW, Lorenz MC, Fulco CS, Roach RC. Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance. Am J Physiol Heart Circ Physiol. 2013;305(5):H620–33.

    Google Scholar 

  55. Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol. 2013;305(5):H620–33.

    CAS  PubMed  Google Scholar 

  56. Faraci FM. Protecting the brain with eNOS: run for your life. Circ Res. 2006;99(10):1029–30.

    CAS  PubMed  Google Scholar 

  57. Vaynman S, Gomez-Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84(4):699–715.

    CAS  PubMed  Google Scholar 

  58. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT. Exercise, experience, and the aging brain. Neurobiol Aging. 2002;23(5):941–55.

    PubMed  Google Scholar 

  59. Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab. 1992;12(1):110–9.

    CAS  PubMed  Google Scholar 

  60. Stummer W, Weber K, Tranmer B, Baethmann A, Kempski O. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke. 1994;25(9):1862–9.

    CAS  PubMed  Google Scholar 

  61. Wang RY, Yang YR, Yu SM. Protective effects of treadmill training on infarction in rats. Brain Res. 2001;922(1):140–3.

    CAS  PubMed  Google Scholar 

  62. Ang ET, Wong PT, Moochhala S, Ng YK. Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience. 2003;118(2):335–45.

    CAS  PubMed  Google Scholar 

  63. Boman K, Hellsten G, Bruce A, Hallmans G, Nilsson TK. Endurance physical activity, diet, and fibrinolysis. Atherosclerosis. 1994;106(1):65–74.

    CAS  PubMed  Google Scholar 

  64. Killewich LA, Macko RF, Montgomery PS, Wiley LA, Gardner AW. Exercise training enhances endogenous fibrinolysis in peripheral arterial disease. J Vasc Surg. 2004;40(4):741–5.

    PubMed  Google Scholar 

  65. Koenig W, Sund M, Doring A, Ernst E. Leisure-time physical activity but not work-related physical activity is associated with decreased plasma viscosity. Results from a large population sample. Circulation. 1997;95(2):335–41.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH Award R01 NS099455 A1 to David C. Hess.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Hafez.

Ethics declarations

The animals were housed at the Augusta University animal care facility, which is approved by the American Association for Accreditation of Laboratory Animal Care. This study was conducted in accordance with the National Institute of Health guidelines for the care and use of animals in research and all protocols were approved by the institutional animal care and use committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable national and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, S., Khan, M.B., Awad, M.E. et al. Short-Term Acute Exercise Preconditioning Reduces Neurovascular Injury After Stroke Through Induced eNOS Activation. Transl. Stroke Res. 11, 851–860 (2020). https://doi.org/10.1007/s12975-019-00767-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00767-y

Keywords

Navigation