Skip to main content
Log in

Increased 12/15-Lipoxygenase Leads to Widespread Brain Injury Following Global Cerebral Ischemia

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Global ischemia following cardiac arrest is characterized by high mortality and significant neurological deficits in long-term survivors. Its mechanisms of neuronal cell death have only partially been elucidated. 12/15-lipoxygenase (12/15-LOX) is a major contributor to delayed neuronal cell death and vascular injury in experimental stroke, but a possible role in brain injury following global ischemia has to date not been investigated. Using a mouse bilateral occlusion model of transient global ischemia which produced surprisingly widespread injury to cortex, striatum, and hippocampus, we show here that 12/15-LOX is increased in a time-dependent manner in the vasculature and neurons of both cortex and hippocampus. Furthermore, 12/15-LOX co-localized with apoptosis-inducing factor (AIF), a mediator of non-caspase-related apoptosis in the cortex. In contrast, caspase-3 activation was more prevalent in the hippocampus. 12/15-lipoxygenase knockout mice were protected against global cerebral ischemia compared to wild-type mice, accompanied by reduced neurologic impairment. The lipoxygenase inhibitor LOXBlock-1 similarly reduced neuronal cell death both when pre-administered and when given at a therapeutically relevant time point 1 h after onset of ischemia. These findings suggest a pivotal role for 12/15-LOX in both caspase-dependent and caspase-independent apoptotic pathways following global cerebral ischemia and suggest a novel therapeutic approach to reduce brain injury following cardiac arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nadkarni V, Larkin G, Peberdy M, Carey S, Kaye W, Mancini M, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006;295:50–7.

    Article  CAS  PubMed  Google Scholar 

  2. Eisenberg M, Mengert T. Primary care: cardiac resuscitation. N Engl J Med. 2001;344:1304–13.

    Article  CAS  PubMed  Google Scholar 

  3. Roine R, Kajaste S, Kaste M. Neuropsychological sequelae of cardiac arrest. JAMA. 1993;269:237–42.

    Article  CAS  PubMed  Google Scholar 

  4. Dietrich W, Kuluz J. New research in the field of stroke: therapeutic hypothermia after cardiac arrest. Stroke. 2003;34:1051–3.

    Article  Google Scholar 

  5. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206. doi:10.1056/NEJMoa1310519.

    Article  CAS  PubMed  Google Scholar 

  6. Kirino T. Delayed neuronal death. Neuropathology. 2000;20(Suppl):S95–7.

    Article  PubMed  Google Scholar 

  7. Kitagawa K, Matsumoto M, Oda T, Niinobe M, Hata R, Handa N, et al. Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience. 1990;35(3):551–8.

    Article  CAS  PubMed  Google Scholar 

  8. Khanna S, Roy S, Slivka A, Craft TK, Chaki S, Rink C, et al. Neuroprotective properties of the natural vitamin E alpha-tocotrienol. Stroke. 2005;36(10):2258–64. doi:10.1161/01.STR.0000181082.70763.22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pallast S, Arai K, Pekcec A, Yigitkanli K, Yu Z, Wang X, et al. Increased nuclear apoptosis-inducing factor after transient focal ischemia: a 12/15-lipoxygenase-dependent organelle damage pathway. J Cereb Blood Flow Metab. 2010;30(6):1157–67. doi:10.1038/jcbfm.2009.281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, et al. Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke. 2008;39(9):2538–43. doi:10.1161/STROKEAHA.108.514927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke. 2006;37(12):3014–8. doi:10.1161/01.STR.0000249004.25444.a5.

    Article  PubMed  Google Scholar 

  12. van Leyen K, Arai K, Jin G, Kenyon V, Gerstner B, Rosenberg PA, et al. Novel lipoxygenase inhibitors as neuroprotective reagents. J Neurosci Res. 2008;86(4):904–9. doi:10.1002/jnr.21543.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yigitkanli K, Pekcec A, Karatas H, Pallast S, Mandeville E, Joshi N, et al. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke. Ann Neurol. 2013;73(1):129–35. doi:10.1002/ana.23734.

    Article  CAS  PubMed  Google Scholar 

  14. Lee SR, Lok J, Rosell A, Kim HY, Murata Y, Atochin D, et al. Reduction of hippocampal cell death and proteolytic responses in tissue plasminogen activator knockout mice after transient global cerebral ischemia. Neuroscience. 2007;150(1):50–7. doi:10.1016/j.neuroscience.2007.06.029.

    Article  CAS  PubMed  Google Scholar 

  15. Zhen G, Dore S. Optimized protocol to reduce variable outcomes for the bilateral common carotid artery occlusion model in mice. J Neurosci Methods. 2007;166(1):73–80. doi:10.1016/j.jneumeth.2007.06.029.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Murakami K, Kondo T, Kawase M, Chan PH. The development of a new mouse model of global ischemia: focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res. 1998;780:304–10.

    Article  CAS  PubMed  Google Scholar 

  17. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A. 2012;109(46):18962–7. doi:10.1073/pnas.1121288109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J. 2003;44(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  19. Thal SC, Thal SE, Plesnila N. Characterization of a 3-vessel occlusion model for the induction of complete global cerebral ischemia in mice. J Neurosci Methods. 2010;192(2):219–27. doi:10.1016/j.jneumeth.2010.07.032.

    Article  PubMed  Google Scholar 

  20. McGraw CP. Experimental cerebral infarctioneffects of pentobarbital in Mongolian gerbils. Arch Neurol. 1977;34(6):334–6.

    Article  CAS  PubMed  Google Scholar 

  21. Schmued LC, Albertson C, Slikker Jr W. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997;751(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  22. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000;874(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  23. Ehara A, Ueda S. Application of Fluoro-Jade C in acute and chronic neurodegeneration models: utilities and staining differences. Acta Histochem Cytochem. 2009;42:171–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kristian T, Hu B. Guidelines for using mouse global cerebral ischemia models. Transl Stroke Res. 2013;4(3):343–50. doi:10.1007/s12975-012-0236-z.

    Article  PubMed  Google Scholar 

  25. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8. doi:10.1002/ana.410110509.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci. 1998;18(13):4914–28.

    CAS  PubMed  Google Scholar 

  27. Sun D, Funk CD. Disruption of 12/15-lipoxygenase expression in peritoneal macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J Biol Chem. 1996;271(39):24055–62.

    Article  CAS  PubMed  Google Scholar 

  28. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci. 1995;15(2):1001–11.

    CAS  PubMed  Google Scholar 

  29. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci. 2007;27(16):4253–60. doi:10.1523/JNEUROSCI.0211-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshioka H, Niizuma K, Katsu M, Sakata H, Okami N, Chan PH. Consistent injury to medium spiny neurons and white matter in the mouse striatum after prolonged transient global cerebral ischemia. J Neurotrauma. 2011;28(4):649–60. doi:10.1089/neu.2010.1662.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Islekel H, Islekel S, Guner G, Ozdamar N. Evaluation of lipid peroxidation, cathepsin L and acid phosphatase activities in experimental brain ischemia-reperfusion. Brain Res. 1999;843(1–2):18–24.

    Article  CAS  PubMed  Google Scholar 

  32. Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS. Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res. 2001;41(3):233–41.

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Maher P, Schubert D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron. 1997;19(2):453–63.

    Article  CAS  PubMed  Google Scholar 

  34. Tang XL, Takano H, Xuan YT, Sato H, Kodani E, Dawn B, et al. Hypercholesterolemia abrogates late preconditioning via a tetrahydrobiopterin-dependent mechanism in conscious rabbits. Circulation. 2005;112(14):2149–56. doi:10.1161/CIRCULATIONAHA.105.566190.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin. 2006;24(1):1–21. doi:10.1016/j.ncl.2005.10.004.

    Article  PubMed  Google Scholar 

  36. Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab. 2004;24(6):681–92. doi:10.1097/01.WCB.0000127161.89708.A5.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal. 2011;4(167):ra20. doi:10.1126/scisignal.2000902.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, et al. AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci. 2009;1171:2–11. doi:10.1111/j.1749-6632.2009.04681.x.

    Article  CAS  PubMed  Google Scholar 

  39. Cao G, Xing J, Xiao X, Liou AK, Gao Y, Yin XM, et al. Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci. 2007;27(35):9278–93. doi:10.1523/JNEUROSCI.2826-07.2007.

    Article  CAS  PubMed  Google Scholar 

  40. Pallast S, Arai K, Wang X, Lo EH, van Leyen K. 12/15-lipoxygenase targets neuronal mitochondria under oxidative stress. J Neurochem. 2009;111(3):882–9. doi:10.1111/j.1471-4159.2009.06379.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Leyen K. Lipoxygenase: an emerging target for stroke therapy. CNS Neurol Disord Drug Targets. 2013;12(2):191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cao G, Clark RS, Pei W, Yin W, Zhang F, Sun FY, et al. Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab. 2003;23(10):1137–50.

    Article  CAS  PubMed  Google Scholar 

  43. Chan P. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res. 2004;29:1943–9.

    Article  CAS  PubMed  Google Scholar 

  44. Thal SE, Zhu C, Thal SC, Blomgren K, Plesnila N. Role of apoptosis inducing factor (AIF) for hippocampal neuronal cell death following global cerebral ischemia in mice. Neurosci Lett. 2011;499(1):1–3. doi:10.1016/j.neulet.2011.05.016.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia. J Cereb Blood Flow Metab. 2005;25(9):1119–29. doi:10.1038/sj.jcbfm.9600111.

    Article  CAS  PubMed  Google Scholar 

  46. Kenyon V, Chorny I, Carvajal WJ, Holman TR, Jacobson MP. Novel human lipoxygenase inhibitors discovered using virtual screening with homology models. J Med Chem. 2006;49(4):1356–63. doi:10.1021/jm050639j.

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Jin H, Hua Y, Keep RF, Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke. 2012;43(9):2476–82. doi:10.1161/STROKEAHA.112.661819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Won SJ, Kim JE, Cittolin-Santos GF, Swanson RA. Assessment at the single-cell level identifies neuronal glutathione depletion as both a cause and effect of ischemia-reperfusion oxidative stress. J Neurosci. 2015;35(18):7143–52. doi:10.1523/JNEUROSCI.4826-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Li J, Follett PL, Zhang Y, Cotanche DA, Jensen FE, et al. 12-lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes. Eur J Neurosci. 2004;20(8):2049–58. doi:10.1111/j.1460-9568.2004.03650.x.

    Article  PubMed  Google Scholar 

  50. Lee SR, Tsuji K, Lee SR, Lo EH. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci. 2004;24(3):671–8. doi:10.1523/JNEUROSCI.4243-03.2004.

    Article  CAS  PubMed  Google Scholar 

  51. Park JW, Jang YH, Kim JM, Lee H, Park WK, Lim MB, et al. Green tea polyphenol (−)-epigallocatechin gallate reduces neuronal cell damage and up-regulation of MMP-9 activity in hippocampal CA1 and CA2 areas following transient global cerebral ischemia. J Neurosci Res. 2009;87(2):567–75. doi:10.1002/jnr.21847.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support through grants from the US National Institutes of Health (NIH R01NS049430, R01NS069939, and R21NS087165 to K.v.L.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus van Leyen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigitkanli, K., Zheng, Y., Pekcec, A. et al. Increased 12/15-Lipoxygenase Leads to Widespread Brain Injury Following Global Cerebral Ischemia. Transl. Stroke Res. 8, 194–202 (2017). https://doi.org/10.1007/s12975-016-0509-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0509-z

Keywords

Navigation