Skip to main content

Advertisement

Log in

Vascular Neural Network Phenotypic Transformation After Traumatic Injury: Potential Role in Long-Term Sequelae

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes, and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up- and downstream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders (Zhang et al., Nat Rev Neurol 8(12):711–716, 2012). This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood flow, smooth muscle cells, matrix, blood–brain barrier structures and function, and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN, as this may yield meaningful therapeutic targets to resolve posttraumatic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8(12):711–6. doi:10.1038/nrneurol.2012.210.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, et al. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill Summ. 2011;60(5):1–32.

    PubMed  Google Scholar 

  3. Thurman D, Guerrero J. Trends in hospitalization associated with traumatic brain injury. JAMA. 1999;282(10):954–7.

    CAS  PubMed  Google Scholar 

  4. Pop V, Badaut J. A neurovascular perspective for long-term changes after brain trauma. Transl Stroke Res. 2011;2(4):533–45. doi:10.1007/s12975-011-0126-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. Protein accumulation in traumatic brain injury. Neuromol Med. 2003;4(1–2):59–72. doi:10.1385/NMM:4:1-2:59.

    CAS  Google Scholar 

  6. Gavett BE, Stern RA, Cantu RC, Nowinski CJ, McKee AC. Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther. 2010;2(3):18. doi:10.1186/alzrt42.

    PubMed Central  PubMed  Google Scholar 

  7. Johnson VE, Stewart W, Smith DH. Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat Rev Neurosci. 2010;11(5):361–70. doi:10.1038/nrn2808.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Ponsford J, Willmott C, Rothwell A, Cameron P, Ayton G, Nelms R, et al. Cognitive and behavioral outcome following mild traumatic head injury in children. J Head Trauma Rehabil. 1999;14(4):360–72.

    CAS  PubMed  Google Scholar 

  9. Ponsford J, Willmott C, Rothwell A, Cameron P, Ayton G, Nelms R, et al. Impact of early intervention on outcome after mild traumatic brain injury in children. Pediatrics. 2001;108(6):1297–303.

    CAS  PubMed  Google Scholar 

  10. Ponsford J, Cameron P, Fitzgerald M, Grant M, Mikocka-Walus A. Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. J Neurotrauma. 2011;28(6):937–46. doi:10.1089/neu.2010.1516.

    PubMed  Google Scholar 

  11. Lippert-Gruner M, Kuchta J, Hellmich M, Klug N. Neurobehavioural deficits after severe traumatic brain injury (TBI). Brain Inj. 2006;20(6):569–74. doi:10.1080/02699050600664467.

    PubMed  Google Scholar 

  12. Babikian T, Satz P, Zaucha K, Light R, Lewis RS, Asarnow RF. The UCLA longitudinal study of neurocognitive outcomes following mild pediatric traumatic brain injury. J Int Neuropsychol Soc. 2011;17:886–95. doi:10.1017/S1355617711000907.

    Google Scholar 

  13. Kuppermann N, Holmes JF, Dayan PS, Hoyle Jr JD, Atabaki SM, Holubkov R, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160–70. doi:10.1016/S0140-6736(09)61558-0.

    PubMed  Google Scholar 

  14. Schneier AJ, Shields BJ, Hostetler SG, Xiang H, Smith GA. Incidence of pediatric traumatic brain injury and associated hospital resource utilization in the United States. Pediatrics. 2006;118(2):483–92.

    PubMed  Google Scholar 

  15. Brown AW, Leibson CL, Malec JF, Perkins PK, Diehl NN, Larson DR. Long-term survival after traumatic brain injury: a population-based analysis. NeuroRehabilitation. 2004;19(1):37–43.

    PubMed  Google Scholar 

  16. Harrison-Felix C, Whiteneck G, DeVivo M, Hammond FM, Jha A. Mortality following rehabilitation in the traumatic brain injury model systems of care. NeuroRehabilitation. 2004;19(1):45–54.

    PubMed  Google Scholar 

  17. Himanen L, Portin R, Hamalainen P, Hurme S, Hiekkanen H, Tenovuo O. Risk factors for reduced survival after traumatic brain injury: a 30-year follow-up study. Brain Inj. 2011;25(5):443–52. doi:10.3109/02699052.2011.556580.

    PubMed  Google Scholar 

  18. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35. doi:10.1097/NEN.0b013e3181a9d503.

    PubMed Central  PubMed  Google Scholar 

  19. Fujita M, Wei EP, Povlishock JT. Intensity- and interval-specific repetitive traumatic brain injury can evoke both axonal and microvascular damage. J Neurotrauma. 2012;29(12):2172–80. doi:10.1089/neu.2012.2357.

    PubMed Central  PubMed  Google Scholar 

  20. Hart Jr J, Kraut MA, Womack KB, Strain J, Didehbani N, Bartz E, et al. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study. JAMA Neurol. 2013;70(3):326–35. doi:10.1001/2013.jamaneurol.340.

    PubMed Central  PubMed  Google Scholar 

  21. Gardner A, Iverson GL, Stanwell P. A systematic review of proton magnetic resonance spectroscopy in sport-related concussion. J Neurotrauma. 2013. doi:10.1089/neu.2013.3079.

    PubMed  Google Scholar 

  22. Gardner A, Iverson GL, McCrory P. Chronic traumatic encephalopathy in sport: a systematic review. Br J Sports Med. 2013. doi:10.1136/bjsports-2013-092646.

    Google Scholar 

  23. Satz P. Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology. 1993;7(3):273–95.

    Google Scholar 

  24. Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VM, et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol. 2004;190(1):192–203. doi:10.1016/j.expneurol.2004.06.011.

    CAS  PubMed  Google Scholar 

  25. DeKosky ST, Abrahamson EE, Ciallella JR, Paljug WR, Wisniewski SR, Clark RS, et al. Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol. 2007;64(4):541–4. doi:10.1001/archneur.64.4.541.

    PubMed  Google Scholar 

  26. Levine B, Kovacevic N, Nica EI, Cheung G, Gao F, Schwartz ML, et al. The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology. 2008;70(10):771–8. doi:10.1212/01.wnl.0000304108.32283.aa.

    CAS  PubMed  Google Scholar 

  27. Ragan DK, McKinstry R, Benzinger T, Leonard J, Pineda JA. Depression of whole-brain oxygen extraction fraction is associated with poor outcome in pediatric traumatic brain injury. Pediatr Res. 2012;71(2):199–204. doi:10.1038/pr.2011.31.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Cohen Z, Bonvento G, Lacombe P, Hamel E. Serotonin in the regulation of brain microcirculation. Prog Neurobiol. 1996;50(4):335–62.

    CAS  PubMed  Google Scholar 

  29. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol. 2006;100(3):1059–64. doi:10.1152/japplphysiol.00954.2005.

    PubMed  Google Scholar 

  30. Cauli B, Hamel E. Revisiting the role of neurons in neurovascular coupling. Front Neuroenerg. 2010;2:9. doi:10.3389/fnene.2010.00009.

    Google Scholar 

  31. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    CAS  PubMed  Google Scholar 

  32. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi:10.1016/j.nbd.2009.07.030.

    CAS  PubMed  Google Scholar 

  33. Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, et al. Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010;69(10):1034–43. doi:10.1097/NEN.0b013e3181f46e25.

    CAS  PubMed  Google Scholar 

  34. Silverberg GD, Miller MC, Machan JT, Johanson CE, Caralopoulos IN, Pascale CL, et al. Amyloid and Tau accumulate in the brains of aged hydrocephalic rats. Brain Res. 2010;1317:286–96. doi:10.1016/j.brainres.2009.12.065.

    CAS  PubMed  Google Scholar 

  35. Ge S, Song L, Pachter JS. Where is the blood–brain barrier … really? J Neurosci Res. 2005;79(4):421–7. doi:10.1002/jnr.20313.

    CAS  PubMed  Google Scholar 

  36. Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, et al. Expression of caveolin-1 in human brain microvessels. Neuroscience. 2002;115(1):145–52.

    CAS  PubMed  Google Scholar 

  37. Vogelgesang S, Warzok RW, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer HK, et al. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 2004;1(2):121–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Ruderisch N, Virgintino D, Makrides V, Verrey F. Differential axial localization along the mouse brain vascular tree of luminal sodium-dependent glutamine transporters Snat1 and Snat3. J Cereb Blood Flow Metab. 2011;31(7):1637–47. doi:10.1038/jcbfm.2011.21.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Saubamea B, Cochois-Guegan V, Cisternino S, Scherrmann JM. Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab. 2012;32(1):81–92. doi:10.1038/jcbfm.2011.109.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Badaut J, Nehlig A, Verbavatz J, Stoeckel M, Freund-Mercier MJ, Lasbennes F. Hypervascularization in the magnocellular nuclei of the rat hypothalamus: relationship with the distribution of aquaporin-4 and markers of energy metabolism. J Neuroendocrinol. 2000;12(10):960–9.

    CAS  PubMed  Google Scholar 

  41. del Zoppo GJ, Milner R. Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol. 2006;26(9):1966–75. doi:10.1161/01.ATV.0000232525.65682.a2.

    PubMed  Google Scholar 

  42. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev Neurobiol. 2011;71(11):1018–39. doi:10.1002/dneu.20954.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Berardi N, Pizzorusso T, Maffei L. Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron. 2004;44(6):905–8. doi:10.1016/j.neuron.2004.12.008.

    CAS  PubMed  Google Scholar 

  44. Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci. 2003;4(6):456–68. doi:10.1038/nrn1115.

    CAS  PubMed  Google Scholar 

  45. Milner R, Campbell IL. Developmental regulation of beta1 integrins during angiogenesis in the central nervous system. Mol Cell Neurosci. 2002;20(4):616–26.

    CAS  PubMed  Google Scholar 

  46. Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67(12):1113–21. doi:10.1097/NEN.0b013e31818f9ca8.

    PubMed  Google Scholar 

  47. Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, et al. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci. 2005;25(14):3701–11. doi:10.1523/JNEUROSCI.4346-04.2005.

    CAS  PubMed  Google Scholar 

  48. Rafols JA, Kreipke CW, Petrov T. Alterations in cerebral cortex microvessels and the microcirculation in a rat model of traumatic brain injury: a correlative EM and laser Doppler flowmetry study. Neurol Res. 2007;29(4):339–47. doi:10.1179/016164107X204648.

    PubMed  Google Scholar 

  49. Badaut J, Moro V, Seylaz J, Lasbennes F. Distribution of muscarinic receptors on the endothelium of cortical vessels in the rat brain. Brain Res. 1997;778(1):25–33.

    CAS  PubMed  Google Scholar 

  50. Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40. doi:10.1146/annurev-physiol-012110-142315.

    CAS  PubMed  Google Scholar 

  51. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111(25):3481–8. doi:10.1161/CIRCULATIONAHA.105.537878.

    PubMed  Google Scholar 

  52. Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89(3):957–89. doi:10.1152/physrev.00041.2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393(6682):276–80. doi:10.1038/30522.

    CAS  PubMed  Google Scholar 

  54. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487–517.

    CAS  PubMed  Google Scholar 

  55. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J Mon J Neth Soc Cardiol Neth Heart Found. 2007;15(3):100–8.

    CAS  Google Scholar 

  56. Hubbell MC, Semotiuk AJ, Thorpe RB, Adeoye OO, Butler SM, Williams JM, et al. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries. Am J Physiol. 2012;303:C1090–103.

    Google Scholar 

  57. Baethmann A, Maier-Hauff K, Kempski O, Unterberg A, Wahl M, Schurer L. Mediators of brain edema and secondary brain damage. Crit Care Med. 1988;16(10):972–8.

    CAS  PubMed  Google Scholar 

  58. Sahuquillo J, Poca MA, Amoros S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des. 2001;7(15):1475–503.

    CAS  PubMed  Google Scholar 

  59. Gaetz M. The neurophysiology of brain injury. Clin Neurophysiol. 2004;115(1):4–18.

    CAS  PubMed  Google Scholar 

  60. Zweckberger K, Eros C, Zimmermann R, Kim SW, Engel D, Plesnila N. Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma. 2006;23(7):1083–93. doi:10.1089/neu.2006.23.1083.

    PubMed  Google Scholar 

  61. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4–9. doi:10.1093/bja/aem131.

    CAS  PubMed  Google Scholar 

  62. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75(5):685–93. doi:10.3171/jns.1991.75.5.0685.

    CAS  PubMed  Google Scholar 

  63. Bryan Jr RM, Cherian L, Robertson C. Regional cerebral blood flow after controlled cortical impact injury in rats. Anesth Analg. 1995;80(4):687–95.

    PubMed  Google Scholar 

  64. Engel DC, Mies G, Terpolilli NA, Trabold R, Loch A, De Zeeuw CI, et al. Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol. J Neurotrauma. 2008;25(7):739–53. doi:10.1089/neu.2007.0480.

    PubMed  Google Scholar 

  65. Kochanek PM, Marion DW, Zhang W, Schiding JK, White M, Palmer AM, et al. Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma. 1995;12(6):1015–25.

    CAS  PubMed  Google Scholar 

  66. Schroder ML, Muizelaar JP, Bullock MR, Salvant JB, Povlishock JT. Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies. J Neurosurg. 1995;82(6):966–71. doi:10.3171/jns.1995.82.6.0966.

    CAS  PubMed  Google Scholar 

  67. Alford PW, Dabiri BE, Goss JA, Hemphill MA, Brigham MD, Parker KK. Blast-induced phenotypic switching in cerebral vasospasm. Proc Natl Acad Sci U S A. 2011;108(31):12705–10. doi:10.1073/pnas.1105860108.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sahuquillo J, Munar F, Baguena M, Poca MA, Pedraza S, Rodriguez-Baeza A. Evaluation of cerebrovascular CO2-reactivity and autoregulation in patients with post-traumatic diffuse brain swelling (diffuse injury III). Acta Neurochir Suppl. 1998;71:233–6.

    CAS  PubMed  Google Scholar 

  69. Vavilala MS, Muangman S, Tontisirin N, Fisk D, Roscigno C, Mitchell P, et al. Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Dev Neurosci. 2006;28(4–5):348–53. doi:10.1159/000094161.

    CAS  PubMed  Google Scholar 

  70. Muizelaar JP. The use of electroencephalography and brain protection during operation for basilar aneurysms. Neurosurgery. 1989;25(6):899–903.

    CAS  PubMed  Google Scholar 

  71. Muizelaar JP, Ward JD, Marmarou A, Newlon PG, Wachi A. Cerebral blood flow and metabolism in severely head-injured children. Part 2: autoregulation. J Neurosurg. 1989;71(1):72–6.

    CAS  PubMed  Google Scholar 

  72. Freeman SS, Udomphorn Y, Armstead WM, Fisk DM, Vavilala MS. Young age as a risk factor for impaired cerebral autoregulation after moderate to severe pediatric traumatic brain injury. Anesthesiology. 2008;108(4):588–95. doi:10.1097/ALN.0b013e31816725d7.

    PubMed  Google Scholar 

  73. Sharples PM, Stuart AG, Matthews DS, Aynsley-Green A, Eyre JA. Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry. 1995;58(2):145–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sharples PM, Matthews DS, Eyre JA. Cerebral blood flow and metabolism in children with severe head injuries. Part 2: cerebrovascular resistance and its determinants. J Neurol Neurosurg Psychiatry. 1995;58(2):153–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Armstead WM. Cerebral hemodynamics after traumatic brain injury of immature brain. Exp Toxicol Pathol. 1999;51(2):137–42.

    CAS  PubMed  Google Scholar 

  76. Ashwal S, Holshouser BA, Shu SK, Simmons PL, Perkin RM, Tomasi LG, et al. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol. 2000;23(2):114–25.

    CAS  PubMed  Google Scholar 

  77. Bartnik BL, Sutton RL, Fukushima M, Harris NG, Hovda DA, Lee SM. Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J Neurotrauma. 2005;22(10):1052–65. doi:10.1089/neu.2005.22.1052.

    PubMed  Google Scholar 

  78. Casey PA, McKenna MC, Fiskum G, Saraswati M, Robertson CL. Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma. 2008;25(6):603–14. doi:10.1089/neu.2007.0481.

    PubMed Central  PubMed  Google Scholar 

  79. Ashwal S, Holshouser B, Tong K, Serna T, Osterdock R, Gross M, et al. Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury. J Neurotrauma. 2004;21(11):1539–52.

    CAS  PubMed  Google Scholar 

  80. Armstead WM. Age-dependent impairment of K(ATP) channel function following brain injury. J Neurotrauma. 1999;16(5):391–402.

    CAS  PubMed  Google Scholar 

  81. Wada K, Chatzipanteli K, Busto R, Dietrich WD. Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg. 1998;89(5):807–18. doi:10.3171/jns.1998.89.5.0807.

    CAS  PubMed  Google Scholar 

  82. Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol. 2004;14(2):195–201.

    CAS  PubMed  Google Scholar 

  83. Armstead WM, Raghupathi R. Endothelin and the neurovascular unit in pediatric traumatic brain injury. Neurol Res. 2011;33(2):127–32. doi:10.1179/016164111X12881719352138.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Hall ED, Wang JA, Miller DM. Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Exp Neurol. 2012;238(2):176–82. doi:10.1016/j.expneurol.2012.08.024.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Hlatky R, Lui H, Cherian L, Goodman JC, O’Brien WE, Contant CF, et al. The role of endothelial nitric oxide synthase in the cerebral hemodynamics after controlled cortical impact injury in mice. J Neurotrauma. 2003;20(10):995–1006. doi:10.1089/089771503770195849.

    PubMed  Google Scholar 

  86. Cherian L, Chacko G, Goodman C, Robertson CS. Neuroprotective effects of L-arginine administration after cortical impact injury in rats: dose response and time window. J Pharmacol Exp Ther. 2003;304(2):617–23. doi:10.1124/jpet.102.043430.

    CAS  PubMed  Google Scholar 

  87. Orihara Y, Ikematsu K, Tsuda R, Nakasono I. Induction of nitric oxide synthase by traumatic brain injury. Forensic Sci Int. 2001;123(2–3):142–9.

    CAS  PubMed  Google Scholar 

  88. Steiner J, Rafols D, Park HK, Katar MS, Rafols JA, Petrov T. Attenuation of iNOS mRNA exacerbates hypoperfusion and upregulates endothelin-1 expression in hippocampus and cortex after brain trauma. Nitric Oxide. 2004;10(3):162–9. doi:10.1016/j.niox.2004.03.005.

    CAS  PubMed  Google Scholar 

  89. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A. 1997;94(13):6954–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998;273(40):25804–8.

    CAS  PubMed  Google Scholar 

  91. Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 2005;76(2):126–52. doi:10.1016/j.pneurobio.2005.06.001.

    CAS  PubMed  Google Scholar 

  92. Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, et al. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood–brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem. 2011. doi:10.1111/j.1471-4159.2011.07542.x.

    Google Scholar 

  93. Dore-Duffy P, Wang S, Mehedi A, Katyshev V, Cleary K, Tapper A, et al. Pericyte-mediated vasoconstriction underlies TBI-induced hypoperfusion. Neurol Res. 2011;33(2):176–86. doi:10.1179/016164111X12881719352372.

    CAS  PubMed  Google Scholar 

  94. Kreipke CW, Rafols JA. Calponin control of cerebrovascular reactivity: therapeutic implications in brain trauma. J Cell Mol Med. 2009;13(2):262–9. doi:10.1111/j.1582-4934.2008.00508.x.

    CAS  PubMed  Google Scholar 

  95. Plesnila N, Friedrich D, Eriskat J, Baethmann A, Stoffel M. Relative cerebral blood flow during the secondary expansion of a cortical lesion in rats. Neurosci Lett. 2003;345(2):85–8.

    CAS  PubMed  Google Scholar 

  96. Armstead WM. Brain injury impairs ATP-sensitive K+ channel function in piglet cerebral arteries. Stroke. 1997;28(11):2273–9. discussion 80.

    CAS  PubMed  Google Scholar 

  97. Kontos HA, Wei EP. Endothelium-dependent responses after experimental brain injury. J Neurotrauma. 1992;9(4):349–54.

    CAS  PubMed  Google Scholar 

  98. Ueda Y, Walker SA, Povlishock JT. Perivascular nerve damage in the cerebral circulation following traumatic brain injury. Acta Neuropathol. 2006;112(1):85–94. doi:10.1007/s00401-005-0029-5.

    PubMed  Google Scholar 

  99. Sercombe R, Dinh YR, Gomis P. Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol. 2002;88(3):227–49.

    CAS  PubMed  Google Scholar 

  100. Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci. 2000;20(18):7037–42.

    CAS  PubMed  Google Scholar 

  101. Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ. Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. Neuroscientist. 2010;16(2):156–70. doi:10.1177/1073858409355830.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Sifringer M, Stefovska V, Zentner I, Hansen B, Stepulak A, Knaute C, et al. The role of matrix metalloproteinases in infant traumatic brain injury. Neurobiol Dis. 2007;25(3):526–35. doi:10.1016/j.nbd.2006.10.019.

    CAS  PubMed  Google Scholar 

  103. Roberts DJ, Jenne CN, Leger C, Kramer AH, Gallagher CN, Todd S, et al. A prospective evaluation of the temporal matrix metalloproteinase response after severe traumatic brain injury in humans. J Neurotrauma. 2013. doi:10.1089/neu.2012.2841.

    Google Scholar 

  104. Suehiro E, Fujisawa H, Akimura T, Ishihara H, Kajiwara K, Kato S, et al. Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J Neurotrauma. 2004;21(12):1706–11. doi:10.1089/neu.2004.21.1706.

    PubMed  Google Scholar 

  105. Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood–brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl. 2006;96:171–4.

    CAS  PubMed  Google Scholar 

  106. Nag S, Venugopalan R, Stewart DJ. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol. 2007;114(5):459–69. doi:10.1007/s00401-007-0274-x.

    CAS  PubMed  Google Scholar 

  107. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1–14.

    CAS  PubMed  Google Scholar 

  108. Prins ML, Giza CC. Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci. 2006;28(4–5):447–56.

    CAS  PubMed  Google Scholar 

  109. Appelberg KS, Hovda DA, Prins ML. The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J Neurotrauma. 2009;26(4):497–506. doi:10.1089/neu.2008.0664.

    PubMed Central  PubMed  Google Scholar 

  110. Wei EP, Hamm RJ, Baranova AI, Povlishock JT. The long-term microvascular and behavioral consequences of experimental traumatic brain injury after hypothermic intervention. J Neurotrauma. 2009;26(4):527–37. doi:10.1089/neu.2008.0797.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Abrahamson EE, Foley LM, Dekosky ST, Kevin Hitchens T, Ho C, Kochanek PM, et al. Cerebral blood flow changes after brain injury in human amyloid-beta knock-in mice. J Cereb Blood Flow Metab. 2013;33(6):826–33. doi:10.1038/jcbfm.2013.24.

    CAS  PubMed  Google Scholar 

  112. Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7(1):84–96. doi:10.1016/S1474-4422(07)70326-5.

    CAS  PubMed  Google Scholar 

  113. Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169–82. doi:10.1038/nrn2995.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al. The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience. 2008;153(1):175–81.

    CAS  PubMed  Google Scholar 

  115. Pop V, Sorensen DW, Kamper JE, Ajao DO, Murphy MP, Head E, et al. Early brain injury alters the blood–brain barrier phenotype in parallel with beta-amyloid and cognitive changes in adulthood. J Cereb Blood Flow Metab. 2013;33(2):205–14. doi:10.1038/jcbfm.2012.154.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood–brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab. 2010;30(6):1121–36. doi:10.1038/jcbfm.2009.277.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90. doi:10.1172/JCI25247.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774. doi:10.1126/science.1197623.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Zlokovic BV. Neurodegeneration and the neurovascular unit. Nat Med. 2010;16(12):1370–1. doi:10.1038/nm1210-1370.

    CAS  PubMed  Google Scholar 

  120. Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, et al. P-glycoprotein in blood–brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem. 2003;87(4):1010–23.

    CAS  PubMed  Google Scholar 

  121. Predescu D, Palade GE. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol. 1993;265(2 Pt 2):H725–33.

    CAS  PubMed  Google Scholar 

  122. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994;4(7):231–5.

    CAS  PubMed  Google Scholar 

  123. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med. 2000;6(12):1362–7. doi:10.1038/82176.

    CAS  PubMed  Google Scholar 

  124. Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci U S A. 2005;102(1):204–9. doi:10.1073/pnas.0406092102.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol. 2009;185(3):381–5. doi:10.1083/jcb.200811059.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Nag S, Manias JL, Stewart DJ. Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol Appl Neurobiol. 2009;35(4):417–26. doi:10.1111/j.1365-2990.2008.01009.x.

    CAS  PubMed  Google Scholar 

  127. McCaffrey G, Staatz WD, Quigley CA, Nametz N, Seelbach MJ, Campos CR, et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood–brain barrier integrity in vivo. J Neurochem. 2007;103(6):2540–55. doi:10.1111/j.1471-4159.2007.04943.x.

    CAS  PubMed  Google Scholar 

  128. McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, et al. P-glycoprotein trafficking at the blood–brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem. 2012;122(5):962–75. doi:10.1111/j.1471-4159.2012.07831.x.

    CAS  PubMed  Google Scholar 

  129. Mellergard P, Sjogren F, Hillman J. Release of VEGF and FGF in the extracellular space following severe subarachnoidal haemorrhage or traumatic head injury in humans. Br J Neurosurg. 2010;24(3):261–7. doi:10.3109/02688690903521605.

    PubMed  Google Scholar 

  130. Morgan R, Kreipke CW, Roberts G, Bagchi M, Rafols JA. Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res. 2007;29(4):375–81. doi:10.1179/016164107X204693.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dane Sorensen for critical review of the manuscript and David Ajao for tissue staining of Cav-1. This study is supported in part by the NIH R01HD061946 (JB).

Conflict of Interest

Jerome Badaut and Gregory Bix declare that they have no conflict of interest.

Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Badaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badaut, J., Bix, G.J. Vascular Neural Network Phenotypic Transformation After Traumatic Injury: Potential Role in Long-Term Sequelae. Transl. Stroke Res. 5, 394–406 (2014). https://doi.org/10.1007/s12975-013-0304-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0304-z

Keywords

Navigation