Skip to main content

Advertisement

Log in

Steps to Translate Preconditioning from Basic Research to the Clinic

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Efforts to treat cardiovascular and cerebrovascular diseases often focus on the mitigation of ischemia–reperfusion (I/R) injury. Many treatments or “preconditioners” are known to provide substantial protection against I/R injury when administered prior to the event. Brief periods of ischemia itself have been validated as a means to achieve neuroprotection in many experimental disease settings, in multiple organ systems, and in multiple species suggesting a common pathway leading to tolerance. In addition, pharmacological agents that act as potent preconditioners have been described. Experimental induction of neuroprotection using these various preconditioning paradigms has provided a unique window into the brain's endogenous protective mechanisms. Moreover, preconditioning agents themselves hold significant promise as clinical-stage therapies for prevention of I/R injury. The aim of this article is to explore several key steps involved in the preclinical validation of preconditioning agents prior to the conduct of clinical studies in humans. Drug development is difficult, expensive, and relies on multifactorial analysis of data from diverse disciplines. Importantly, there is no single path for the preclinical development of a novel therapeutic and no proven strategy to ensure success in clinical translation. Rather, the conduct of a diverse array of robust preclinical studies reduces the risk of clinical failure by varying degrees depending upon the relevance of preclinical models and drug pharmacology to humans. A strong sense of urgency and high tolerance of failure are often required to achieve success in the development of novel treatment paradigms for complex human conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stroke Therapy Academic Industry Round Table (Fisher M. Chair). Enhancing the development and approval of acute stroke therapies: Stroke Therapy Academic Industry roundtable. Stroke. 2005;36(8):1808–13.

    Google Scholar 

  2. NINDS. Transparency in Reporting Guidance. National Institute of Neurological Diseases and Stroke http://www.ninds.nih.gov/funding/transparency_in_reporting_guidance.pdf. 2012.

  3. Marsh BJ, Stevens SL, Hunter B, Stenzel-Poore MP. Inflammation and the emerging role of the toll-like receptor system in acute brain ischemia. Stroke. 2009;40(3 Suppl):S34–7. doi:10.1161/STROKEAHA.108.534917.

    Article  CAS  PubMed  Google Scholar 

  4. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, et al. Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab. 2008;28(5):1040–7. doi:10.1038/sj.jcbfm.9600606.

    Article  CAS  PubMed  Google Scholar 

  5. Bahjat FR, Williams-Karnesky RL, Kohama SG, West GA, Doyle KP, Spector MD, et al. Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab. 2011;31(5):1229–42. doi:10.1038/jcbfm.2011.6.

    Article  CAS  PubMed  Google Scholar 

  6. Feuerstein GZ, Chavez J. Translational medicine for stroke drug discovery: the pharmaceutical industry perspective. Stroke. 2009;40(3 Suppl):S121–5. Epub 2008 Dec 8.

    Article  CAS  PubMed  Google Scholar 

  7. Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008;25(3):268–78. doi:10.1159/000118039.

    Article  PubMed  Google Scholar 

  8. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.

    Article  CAS  PubMed  Google Scholar 

  9. Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, et al. Cell–cell signaling in the neurovascular unit. Neurochem Res. 2007;32(12):2032–45. doi:10.1007/s11064-007-9342-9.

    Article  CAS  PubMed  Google Scholar 

  10. Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat. 2002;200(6):629–38.

    Article  CAS  PubMed  Google Scholar 

  11. Begley DJ, Brightman MW. Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003;61:39–78.

    Google Scholar 

  12. Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38(6):323–37.

    Article  CAS  Google Scholar 

  13. Cserr HF, Bundgaard M. Blood–brain interfaces in vertebrates: a comparative approach. Am J Physiol. 1984;246(3 Pt 2):R277–88.

    CAS  PubMed  Google Scholar 

  14. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, et al. A cell culture model of the blood–brain barrier. J Cell Biol. 1991;115(6):1725–35.

    Article  CAS  PubMed  Google Scholar 

  15. Ramsauer M, Krause D, Dermietzel R. Angiogenesis of the blood–brain barrier in vitro and the function of cerebral pericytes. FASEB J. 2002;16(10):1274–6. doi:10.1096/fj.01-0814fje.

    CAS  PubMed  Google Scholar 

  16. Zenker D, Begley D, Bratzke H, Rubsamen-Waigmann H, von Briesen H. Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J Physiol. 2003;551(Pt 3):1023–32. doi:10.1113/jphysiol.2003.045880.

    Article  CAS  PubMed  Google Scholar 

  17. Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, et al. Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003;7(2):165–70.

    Article  PubMed  Google Scholar 

  18. Berezowski V, Landry C, Dehouck MP, Cecchelli R, Fenart L. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res. 2004;1018(1):1–9. doi:10.1016/j.brainres.2004.05.092.

    Article  CAS  PubMed  Google Scholar 

  19. Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001;21(5):1538–47.

    CAS  PubMed  Google Scholar 

  20. Sacco RL, Chong JY, Prabhakaran S, Elkind MS. Experimental treatments for acute ischaemic stroke. Lancet. 2007;369(9558):331–41. doi:10.1016/S0140-6736(07)60155-X.

    Article  CAS  PubMed  Google Scholar 

  21. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.

    CAS  PubMed  Google Scholar 

  22. Begley DJ. Understanding and circumventing the blood–brain barrier. Acta Paediatr Suppl. 2003;92(443):83–91.

    CAS  PubMed  Google Scholar 

  23. el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol (Noisy-le-Grand, France). 1999;45(1):15–23.

    CAS  Google Scholar 

  24. Pardridge WM. Molecular biology of the blood–brain barrier. Methods Mol Med. 2003;89:385–99. doi:10.1385/1-59259-419-0:385.

    CAS  PubMed  Google Scholar 

  25. Yoon CH, Kim SJ, Shin BS, Lee KC, Yoo SD. Rapid screening of blood–brain barrier penetration of drugs using the immobilized artificial membrane phosphatidylcholine column chromatography. J Biomol Screen. 2006;11(1):13–20. doi:10.1177/1087057105281656.

    Article  CAS  PubMed  Google Scholar 

  26. Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann Neurol. 1983;14(4):396–402. doi:10.1002/ana.410140403.

    Article  CAS  PubMed  Google Scholar 

  27. Abbott NJ, Hughes CC, Revest PA, Greenwood J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992;103(Pt 1):23–37.

    CAS  PubMed  Google Scholar 

  28. DeBault LE, Cancilla PA. Some properties of isolated endothelial cells in culture. Adv Exp Med Biol. 1980;131:69–78.

    Article  CAS  PubMed  Google Scholar 

  29. Naik P, Cucullo L. In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101(4):1337–54. doi:10.1002/jps.23022.

    Article  CAS  PubMed  Google Scholar 

  30. Fischer S, Renz D, Wiesnet M, Schaper W, Karliczek GF. Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells. Brain Res Mol Brain Res. 1999;74(1–2):135–44.

    Article  CAS  PubMed  Google Scholar 

  31. Fischer S, Wobben M, Kleinstuck J, Renz D, Schaper W. Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am J Physiol Cell Physiol. 2000;279(4):C935–44.

    CAS  PubMed  Google Scholar 

  32. Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: implications for drug delivery. Eur J Pharm Biopharm. 2001;52(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  33. Mark KS, Davis TP. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282(4):H1485–94. doi:10.1152/ajpheart.00645.2001.

    CAS  PubMed  Google Scholar 

  34. Giese H, Mertsch K, Blasig IE. Effect of MK-801 and U83836E on a porcine brain capillary endothelial cell barrier during hypoxia. Neurosci Lett. 1995;191(3):169–72.

    Article  CAS  PubMed  Google Scholar 

  35. Marschner A, Rothenfusser S, Hornung V, Prell D, Krug A, Kerkmann M, et al. CpG ODN enhance antigen-specific NKT cell activation via plasmacytoid dendritic cells. Eur J Immunol. 2005;35(8):2347–57. doi:10.1002/eji.200425721.

    Article  CAS  PubMed  Google Scholar 

  36. Poeck H, Wagner M, Battiany J, Rothenfusser S, Wellisch D, Hornung V, et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood. 2004;103(8):3058–64. doi:10.1182/blood-2003-08-2972.

    Article  CAS  PubMed  Google Scholar 

  37. Brillault J, Berezowski V, Cecchelli R, Dehouck MP. Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J Neurochem. 2002;83(4):807–17.

    Article  CAS  PubMed  Google Scholar 

  38. Dehouck MP, Cecchelli R, Richard Green A, Renftel M, Lundquist S. In vitro blood–brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res. 2002;955(1–2):229–35.

    Article  CAS  PubMed  Google Scholar 

  39. Kondo T, Kinouchi H, Kawase M, Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci Lett. 1996;208(2):101–4.

    Article  CAS  PubMed  Google Scholar 

  40. Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–97. doi:10.2353/ajpath.2007.060693.

    Article  CAS  PubMed  Google Scholar 

  41. Kago T, Takagi N, Date I, Takenaga Y, Takagi K, Takeo S. Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun. 2006;339(4):1197–203. doi:10.1016/j.bbrc.2005.11.133.

    Article  CAS  PubMed  Google Scholar 

  42. Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, et al. Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab. 2007;27(10):1663–74. doi:10.1038/sj.jcbfm.9600464.

    Article  CAS  PubMed  Google Scholar 

  43. Packard AE, Hedges JC, Bahjat FR, Stevens SL, Conlin MJ, Salazar AM, et al. Poly-IC preconditioning protects against cerebral and renal ischemia–reperfusion injury. J Cereb Blood Flow Metab. 2012;32:242–7. doi:10.1038/jcbfm.2011.160.

    Article  CAS  PubMed  Google Scholar 

  44. Gesuete R, Packard AE, Vartanian K, Conrad VK, Stevens SL, Bahjat FR et al. Poly-ICLC preconditioning protects the blood–brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem. 2012;123(Suppl 2):75–85. doi:10.1111/j.1471-4159.2012.07946.x.

    Google Scholar 

  45. Packard AEB, Leung PY, Vartanian KB, Stevens SL, Bahjat FR, Stenzel-Poore MP. TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning. J Cereb Blood Flow Metab. 2012. doi:10.1038/jcbfm.2012.140.

  46. Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J / Natl Res Counc Inst Lab Anim Resour. 2003;44(2):96–104.

    Article  CAS  Google Scholar 

  47. Karpiak SE, Tagliavia A, Wakade CG. Animal models for the study of drugs in ischemic stroke. Annu Rev Pharmacol Toxicol. 1989;29:403–14. doi:10.1146/annurev.pa.29.040189.002155.

    Article  CAS  PubMed  Google Scholar 

  48. Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007;87(1):179–97. doi:10.1016/j.pbb.2007.04.015.

    Article  CAS  PubMed  Google Scholar 

  49. Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx: J Am Soc Exp NeuroTher. 2005;2(3):396–409. doi:10.1602/neurorx.2.3.396.

    Google Scholar 

  50. DeGraba T, Pettigrew L. Why do neuroprotective drugs work in animals but not humans? Neurol Clin. 2000;18:475–93.

    Article  CAS  PubMed  Google Scholar 

  51. Kapoor K, Kak VK, Singh B. Morphology and comparative anatomy of circulus arteriosus cerebri in mammals. Anat Histol Embryol. 2003;32(6):347–55.

    Article  CAS  PubMed  Google Scholar 

  52. Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part II: quantitative magnetization transfer ratio histogram analysis. Am J Neuroradiol. 2002;23(8):1334–41.

    PubMed  Google Scholar 

  53. Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37(5):1211–6.

    Article  PubMed  Google Scholar 

  54. West GA, Golshani KJ, Doyle K, Lessov NS, Hobbs TR, Kohama SG, et al. A new model of cortical stroke in the rhesus macaque. J Cereb Blood Flow Metab. 2009;29(6):1175–86.

    Article  PubMed  Google Scholar 

  55. Urbanski HF, Kohama SG, West GA, Glynn C, Williams-Karnesky RL, Earl E, Neuringer MN, Renner L, Weiss A, Stenzel-Poore MP, Bahjat FR. Changes in spontaneous activity assessed by accelerometry correlate with extent of cerebral ischemia–reperfusion injury in the nonhuman primate. Transl Stroke Res. 2012.

  56. Maeda M, Takamatsu H, Furuichi Y, Noda A, Awaga Y, Tatsumi M, et al. Characterization of a novel thrombotic middle cerebral artery occlusion model in monkeys that exhibits progressive hypoperfusion and robust cortical infarction. J Neurosci Methods. 2005;146(1):106–15.

    Article  PubMed  Google Scholar 

  57. Hirouchi Y, Suzuki E, Mitsuoka C, Jin H, Kitajima S, Kohjimoto Y, et al. Neuroimaging and histopathological evaluation of delayed neurological damage produced by artificial occlusion of the middle cerebral artery in cynomolgus monkeys: establishment of a monkey model for delayed cerebral ischemia. Exp Toxicol Pathol. 2007;59(1):9–16.

    Article  PubMed  Google Scholar 

  58. Huang J, Mocco J, Choudhri TF, Poisik A, Popilskis SJ, Emerson R, et al. A modified transorbital baboon model of reperfused stroke. Stroke. 2000;31(12):3054–63.

    Article  CAS  PubMed  Google Scholar 

  59. Mack WJ, Komotar RJ, Mocco J, Coon AL, Hoh DJ, King RG, et al. Serial magnetic resonance imaging in experimental primate stroke: validation of MRI for pre-clinical cerebroprotective trials. Neurol Res. 2003;25(8):846–52.

    Article  PubMed  Google Scholar 

  60. Drugs. AAoPCo. Alternative routes of drug administration—advantages and disadvantages (subject review). Pediatrics. 1997.

  61. Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modeling in translational drug research. Trends Pharmacol Sci. 2008;29(4):186–91. doi:10.1016/j.tips.2008.01.007.

    Article  CAS  PubMed  Google Scholar 

  62. Hulka B, Griffith J, Wilcosky T. Overview of biological markers. Biological markers in epidemiology. New York: Oxford University Press; 1990.

    Google Scholar 

  63. Sun S, Zhang X, Tough DF, Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med. 1998;188(12):2335–42.

    Article  CAS  PubMed  Google Scholar 

  64. Takeshita S, Takeshita F, Haddad DE, Janabi N, Klinman DM. Activation of microglia and astrocytes by CpG oligodeoxynucleotides. NeuroReport. 2001;12(14):3029–32.

    Article  CAS  PubMed  Google Scholar 

  65. Vicari AP, Schmalbach T, Lekstrom-Himes J, Morris ML, Al-Adhami MJ, Laframboise C, et al. Safety, pharmacokinetics and immune effects in normal volunteers of CPG 10101 (ACTILON), an investigational synthetic toll-like receptor 9 agonist. Antivir Ther. 2007;12(5):741–51.

    CAS  PubMed  Google Scholar 

  66. Wagner I, Sethi S, Xiang W, Giese A, Ebner S, Kretzschmar H. Repeated peripheral administrations of CpG oligodeoxynucleotides lead to sustained CNS immune activation. Immunopharmacol Immunotoxicol. 2007;29(3):413–24.

    Article  CAS  PubMed  Google Scholar 

  67. Stewart VA, McGrath S, Krieg AM, Larson NS, Angov E, Smith CL, et al. Activation of innate immunity in healthy Macaca mulatta macaques by a single subcutaneous dose of GMP CpG 7909: safety data and interferon-inducible protein-10 kinetics for humans and macaques. Clin Vaccine Immunol: CVI. 2008;15(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  68. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience. 2009;158(3):1007–20. doi:10.1016/j.neuroscience.2008.07.067.

    Article  CAS  PubMed  Google Scholar 

  69. Vartanian K, Stenzel-Poore M. Toll-like receptor tolerance as a mechanism for neuroprotection. Transl Stroke Res. 2010;1(4):252–60. doi:10.1007/s12975-010-0033-5.

    Article  CAS  PubMed  Google Scholar 

  70. Virca GD, Kim SY, Glaser KB, Ulevitch RJ. Lipopolysaccharide induced hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem. 1989;264(36):21951–6.

    CAS  PubMed  Google Scholar 

  71. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748(1–2):267–70.

    Article  CAS  PubMed  Google Scholar 

  72. Hua F, Ma J, Ha T, Kelley J, Williams DL, Kao RL, et al. Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J Neuroimmunol. 2008;199(1–2):75–82.

    Article  CAS  PubMed  Google Scholar 

  73. Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, et al. Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke. 2012;43(5):1383–9. doi:10.1161/STROKEAHA.111.641522.

    Article  CAS  PubMed  Google Scholar 

  74. Broad A, Kirby JA, Jones DE. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology. 2007;120(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  75. Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471–84.

    Article  CAS  PubMed  Google Scholar 

  76. Roberts TL, Sweet MJ, Hume DA, Stacey KJ. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol. 2005;174(2):605–8.

    CAS  PubMed  Google Scholar 

  77. Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology. 2011;116(6):1289–96.

    Article  Google Scholar 

  78. Kotelis D, Bischoff MS, Jobst B, von Tengg-Kobligk H, Hinz U, Geisbüsch P, et al. Morphological risk factors of stroke during thoracic endovascular aortic repair. Langenbecks Arch Surg. 2012 Sep 8. [Epub ahead of print].

  79. Palmerini T, Biondi-Zoccai G, Reggiani LB, Sangiorgi D, Alessi L, De Servi S, et al. Risk of stroke with coronary artery bypass graft surgery compared with percutaneous coronary intervention. J Am Coll Cardiol. 2012;60(9):798–805.

    Article  PubMed  Google Scholar 

  80. Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41(5):581–9. doi:10.1002/ana.410410506.

    Article  CAS  PubMed  Google Scholar 

  81. Biondi A, Oppenheim C, Vivas E, Casasco A, Lalam T, Sourour N, et al. Cerebral aneurysms treated by Guglielmi detachable coils: evaluation with diffusion-weighted MR imaging. Am J Neuroradiol. 2000;21(5):957–63.

    CAS  PubMed  Google Scholar 

  82. Lim Fat, Mary Jane MJ. Heparin dosing is associated with diffusion weighted imaging lesion load following aneurysm coiling. J Neurointerv Surg. 2012 May 28. [Epub ahead of print].

  83. Soeda A, Sakai N, Sakai H, Iihara K, Yamada N, Imakita S, et al. Thromboembolic events associated with Guglielmi detachable coil embolization of asymptomatic cerebral aneurysms: evaluation of 66 consecutive cases with use of diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2003;24(1):127–32.

    PubMed  Google Scholar 

  84. Bonati LH, Jongen LM, Haller S, Flach HZ, Dobson J, Nederkoorn PJ, et al. New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: a substudy of the International Carotid Stenting Study (ICSS). Lancet Neurol. 2010;9(4):353–62. Epub 2010 Feb 25.

    Article  PubMed  Google Scholar 

  85. Cronqvist M, Wirestam R, Ramgren B, Brandt L, Romner B, Nilsson O, et al. Endovascular treatment of intracerebral arteriovenous malformations: procedural safety, complications, and results evaluated by MR imaging, including diffusion and perfusion imaging. Am J Neuroradiol. 2006;27(1):162–76.

    CAS  PubMed  Google Scholar 

  86. Kahlert P, Knipp SC, Schlamann M, Thielmann M, Al-Rashid F, Weber M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation. 2010;121(7):870–8. doi:10.1161/CIRCULATIONAHA.109.855866.

    Article  PubMed  Google Scholar 

  87. Merino JG, Latour LL, Tso A, Lee KY, Kang DW, Davis LA, et al. Blood–brain barrier disruption after cardiac surgery. Am J Neuroradiol. 2012 Aug 23. [Epub ahead of print].

  88. Shibazaki KK, Iguchi Y, Kimura K, Ueno Y, Inoue T. New asymptomatic ischemic lesions on diffusion-weighted imaging after cerebral angiography. J Neurol Sci. 2008;266(1–2):150–5. Epub 2007 Oct 24.

    Google Scholar 

  89. Astarci P, Glineur D, Kefer J, D’Hoore W, Renkin J, Vanoverschelde JL, et al. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using Edwards Sapiens valve. Eur J Cardiothorac Surg. 2011;40:475–9. doi:10.1016/j.ejcts.2010.11.070.

    PubMed  Google Scholar 

  90. Eggebrecht H, Schmermund A, Voigtländer T, Kahlert P, Erbel R, Mehta RH. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention. 2012;8(1):129–38. doi:10.4244/EIJV8I1A20.

    Article  PubMed  Google Scholar 

  91. Noble R. The development of resistance by rats and guinea pigs to amounts of trauma usually fatal. Am J Physiol. 1943;38:346–51.

    Google Scholar 

  92. Perez-Pinzon MA, Alonso O, Kraydieh S, Dietrich WD. Induction of tolerance against traumatic brain injury by ischemic preconditioning. NeuroReport. 1999;10(14):2951–4.

    Article  CAS  PubMed  Google Scholar 

  93. Shein NA, Horowitz M, Shohami E. Heat acclimation: a unique model of physiologically mediated global preconditioning against traumatic brain injury. Prog Brain Res. 2007;161:353–63. doi:10.1016/S0079-6123(06)61025-X.

    Article  PubMed  Google Scholar 

  94. Shein NA, Grigoriadis N, Horowitz M, Umschwief G, Alexandrovich AG, Simeonidou C, et al. Microglial involvement in neuroprotection following experimental traumatic brain injury in heat-acclimated mice. Brain Res. 2008;1244:132–41. doi:10.1016/j.brainres.2008.09.032.

    Article  CAS  PubMed  Google Scholar 

  95. Umschwief G, Shein NA, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Heat acclimation provides sustained improvement in functional recovery and attenuates apoptosis after traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(3):616–27. doi:10.1038/jcbfm.2009.234.

    Article  PubMed  Google Scholar 

  96. Longhi L, Gesuete R, Perego C, Ortolano F, Sacchi N, Villa P, et al. Long-lasting protection in brain trauma by endotoxin preconditioning. J Cereb Blood Flow Metab. 2011;31(9):1919–29. doi:10.1038/jcbfm.2011.42.

    Article  CAS  PubMed  Google Scholar 

  97. Altay T, Kang HI, Woo HH, Masaryk TJ, Rasmussen PA, Fiorella DJ, et al. Thromboembolic events associated with endovascular treatment of cerebral aneurysms. J Neurointerv Surg. 2011;3(2):147–50. doi:10.1136/jnis.2010.003616.

    Article  PubMed  Google Scholar 

  98. Cronqvist M, Wirestam R, Ramgren B, Brandt L, Nilsson O, Saveland H, et al. Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology. 2005;47(11):855–73. doi:10.1007/s00234-005-1408-2.

    Article  CAS  PubMed  Google Scholar 

  99. Tymianski M. Can molecular and cellular neuroprotection be translated into therapies for patients?: yes, but not the way we tried it before. Stroke. 2010;41(10 Suppl):S87–90. doi:10.1161/STROKEAHA.110.595496.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary P. Stenzel-Poore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahjat, F.R., Gesuete, R. & Stenzel-Poore, M.P. Steps to Translate Preconditioning from Basic Research to the Clinic. Transl. Stroke Res. 4, 89–103 (2013). https://doi.org/10.1007/s12975-012-0223-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0223-4

Keywords

Navigation