Skip to main content

Advertisement

Log in

Synthesis and Oxygen Electrocatalysis of Iridium Oxide Nanosheets

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Rutile-type iridium dioxide (IrO2) is a well-known electrocatalyst, and its nanoparticle form has recently attracted attention as catalysts and co-catalysts in electrolyzers and fuel cells. In this study, we have successfully synthesized single crystalline iridium dioxide (IrO2) nanosheets with thickness of less than 0.7 nm via exfoliation of layered iridic acid H x Ir y O z ·nH2O, which was prepared via proton exchange of layered potassium iridate, K x Ir y O z ·nH2O. The electrochemically active surface area of the IrO2 nanosheet electrode was similar to or slightly lower than that of 3-nm IrO2 nanoparticles. Despite the lower active surface area, the mass activity for oxygen evolution reaction of IrO2 nanosheets was six times higher compared to that of IrO2 nanoparticles in 0.1 M HClO4 at 1.55 V vs. the reversible hydrogen electrode (17.4 vs. 2.9 A g−1). When IrO2 nanosheets were added to commercial Pt/C as a co-catalyst, increased stability against high potential cycling was obtained. After potential cycling between 1.0 and 1.5 V, the composite catalyst exhibited two times higher oxygen reduction activity compared to non-modified Pt/C. This durability enhancement is attributed to the suppression of the particle growth during the potential cycling test by the modification with IrO2 nanosheets.

IrO2 nanosheets are highly active as electrocatalysts for O2 evolution and O2 reduction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Osada, T. Sasaki, Adv. Mater. 24, 210 (2012)

    Article  CAS  Google Scholar 

  2. M. Osada, T. Sasaki, J. Mater. Chem. 19, 2503 (2009)

    Article  CAS  Google Scholar 

  3. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340, 1226419 (2013)

    Article  Google Scholar 

  4. A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, Energy. Environ. Sci. 3, 82 (2010)

    CAS  Google Scholar 

  5. K. Kai, Y. Yoshida, H. Kageyama, G. Saito, T. Ishigaki, Y. Furukawa, J. Kawamata, J. Am. Chem. Soc. 130, 15938 (2008)

    Article  CAS  Google Scholar 

  6. Y. Omomo, T. Sasaki, L. Wang, M. Watanabe, J. Am. Chem. Soc. 125, 3568 (2003)

    Article  CAS  Google Scholar 

  7. W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Angew. Chem. Int. Ed. 42, 4092 (2003)

    Article  CAS  Google Scholar 

  8. K. Fukuda, H. Kato, J. Sato, W. Sugimoto, Y. Takasu, J. Solid State Chem. 182, 2997 (2009)

    Article  CAS  Google Scholar 

  9. K. Fukuda, T. Saida, J. Sato, M. Yonezawa, Y. Takasu, W. Sugimoto, Inorg. Chem. 49, 4391 (2010)

    Article  CAS  Google Scholar 

  10. W. Sugimoto, T. Ohta, K. Yokoshima, Y. Takasu, Electrochemistry 75, 645 (2007)

    Article  CAS  Google Scholar 

  11. W. Shimizu, S. Makino, K. Takahashi, N. Imanishi, W. Sugimoto, J. Power Sources 241, 572 (2013)

    Article  CAS  Google Scholar 

  12. S. Makino, T. Ban, W. Sugimoto, Electrochemistry 81, 795 (2013)

    Article  CAS  Google Scholar 

  13. S. Makino, T. Ban, W. Sugimoto, J. Electrochem. Soc. 162, A5001 (2015)

    Article  CAS  Google Scholar 

  14. T. Saida, W. Sugimoto, Y. Takasu, Electrochim. Acta 55, 857 (2010)

    Article  CAS  Google Scholar 

  15. D. Takimoto, C. Chauvin, W. Sugimoto, Electrochem. Commun. 33, 123 (2013)

    Article  CAS  Google Scholar 

  16. C. Chauvin, Q. Liu, T. Saida, K.S. Lokesh, T. Sakai, W. Sugimoto, ECS Trans. 50(2), 1583 (2013)

    Article  Google Scholar 

  17. D. Takimoto, T. Ohnishi, W. Sugimoto, ECS Electrochem. Lett. 4, F35 (2015)

    Article  CAS  Google Scholar 

  18. E. Antolini, ACS Catal. 4, 1426 (2014)

    Article  CAS  Google Scholar 

  19. L.M. Da Silva, D.V. Franco, L.A. De Faria, J.F.C. Boodts, Electrochim. Acta 49, 3977 (2004)

    Article  CAS  Google Scholar 

  20. M.H.P. Santana, L.A. De Faria, J.F.C. Boodts, Electrochim. Acta 49, 1925 (2004)

    Article  CAS  Google Scholar 

  21. Y.-H. Wang, Q.-Y. Chen, J. Int, Electrochem. 1, 2013 (2013)

    Google Scholar 

  22. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, J. Electrochem. Soc. 147, 2018 (2000)

    Article  CAS  Google Scholar 

  23. A.S. Aricò, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, V. Antonucci, J. Appl. Electrochem. 43, 107 (2013)

    Article  Google Scholar 

  24. C. Zhao, H. Yu, Y. Li, X. Li, L. Ding, L. Fan, J. Electroanal. Chem. 688, 269 (2013)

    Article  CAS  Google Scholar 

  25. E. Ortel, T. Reier, P. Strasser, R. Kraehnert, Chem. Mater. 23, 3201 (2011)

    Article  CAS  Google Scholar 

  26. D. Takimoto, C. Chauvin, W. Sugimoto, J. Electrochem. Soc. 163, F11 (2016)

    Article  CAS  Google Scholar 

  27. R. Adams, R.L. Shriner, J. Am. Chem. Soc. 45, 2171 (1923)

    Article  CAS  Google Scholar 

  28. H.-N. Kim, S.W. Keller, T.E. Mallouk, J. Schmitt, G. Decher, Chem. Mater. 9, 1414 (1997)

    Article  CAS  Google Scholar 

  29. Q. Gao, O. Giraldo, W. Tong, S.L. Suib, Chem. Mater. 13, 778 (2001)

    Article  CAS  Google Scholar 

  30. T. Sasaki, Y. Ebina, Y. Kitami, M. Watanabe, T. Oikawa, J. Phys. Chem. B 105, 6116 (2001)

    Article  CAS  Google Scholar 

  31. J. Mozota, B.E. Conway, Electrochim. Acta 28, 1 (1983)

    Article  CAS  Google Scholar 

  32. B.E. Conway, J. Mozota, Electrochim. Acta 28, 9 (1983)

    Article  CAS  Google Scholar 

  33. H.A. Andreas, H. Elzanowska, I. Serebrennikova, V. Birss, J. Electrochem. Soc. 147, 4598 (2000)

    Article  CAS  Google Scholar 

  34. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.I. Kimijima, N. Iwashita, Chem. Rev. 107, 3904 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST). D.T. acknowledges the support from the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows Grant Number 16J09715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Sugimoto.

Electronic Supplementary Material

.

ESM 1

(DOCX 4064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takimoto, D., Fukuda, K., Miyasaka, S. et al. Synthesis and Oxygen Electrocatalysis of Iridium Oxide Nanosheets. Electrocatalysis 8, 144–150 (2017). https://doi.org/10.1007/s12678-016-0348-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0348-4

Keywords

Navigation