Skip to main content
Log in

Thermodynamics of the Under-Potential Deposition of Hydrogen on Polycrystalline Platinum in Aqueous Trifluoromethanesulfonic Acid Solution

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Understanding of the electrocatalytic behavior of the Pt/Nafion® ionomer interface is of great importance to fuel cell technology. Trifluoromethanesulfonic acid (CF3SO3H) is used as an electrolyte because it is the smallest fluorinated sulfonic acid and serves as a suitable molecular model mimicking the Nafion® ionomer. The under-potential deposition of H (UPD H) on polycrystalline Pt electrode in CF3SO3H is investigated using cyclic voltammetry in the 278–333 K temperature (T) range. The general electrochemical adsorption isotherm is used to determine the Gibbs energy (−13 ≤ Δ ec − ads (HUPD) ≤ −27 kJ mol−1), entropy (−59 ≤ Δ ec − ads (HUPD) ≤ +20 J mol−1 K−1), and enthalpy (−8 ≤ Δ ec − ads (HUPD) ≤ −43 kJ mol−1) of electro-adsorption, and the Pt–HUPD surface bond energy (+225 ≤ \( {E}_{\mathrm{Pt}-{\mathrm{H}}_{\mathrm{UPD}}} \) ≤ +261 kJ mol−1). The lateral interactions between the HUPD adatoms are repulsive; the energy of lateral interactions is T-dependent (ω(HUPD) = a − b T) and is in the +14 ≤ ω(HUPD) ≤ +22 kJ mol−1 range. The values of Δ ec − ads (HUPD), Δ ec − ads (HUPD), Δ ec − ads (HUPD), and \( {E}_{\mathrm{Pt}-{\mathrm{H}}_{\mathrm{UPD}}} \) for UPD H in CF3SO3H are very similar to the analogous values obtained in aqueous H2SO4 and HClO4 solutions. The anion present in the electrolyte has a small impact on UPD H and influences the values of Δ ec − ads (HUPD) only over a narrow HUPD coverage range. The anion nature has practically no impact on the values of Δ ec − ads (HUPD), Δ ec − ads (HUPD), or \( {E}_{\mathrm{Pt}-{\mathrm{H}}_{\mathrm{UPD}}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Papageorgopoulos, 2013 Fuel Cells Annual Merit Review (U.S. Department of Energy, Arlington, 2013)

    Google Scholar 

  2. A. Ohma, T. Mashio, K. Sato, H. Iden, Y. Ono, K. Sakai, K. Akizuki, S. Takaichi, K. Shinohara, Electrochim. Acta 56, 10832 (2011)

    Article  CAS  Google Scholar 

  3. M.W. Breiter, Trans. Faraday Soc. 60, 1445 (1964)

    Article  CAS  Google Scholar 

  4. B.E. Conway, H. Angerstein-Kozlowska, W.B.A. Sharp, J. Chem. Soc. Faraday Trans. 174, 1373 (1978)

    Article  Google Scholar 

  5. G. Jerkiewicz, J.J. Borodzinski, W. Chrzanowski, B.E. Conway, J. Electrochem. Soc. 142, 3755 (1995)

    Article  CAS  Google Scholar 

  6. G. Jerkiewicz, A. Zolfaghari, J. Electrochem. Soc. 143, 1240 (1996)

    Article  CAS  Google Scholar 

  7. G. Jerkiewicz, A. Zolfaghari, J. Phys. Chem. 100, 8454 (1996)

    Article  CAS  Google Scholar 

  8. G. Jerkiewicz, Prog. Surf. Sci. 57, 137 (1998)

    Article  CAS  Google Scholar 

  9. G. Jerkiewicz, Electrocatalysis 1, 179 (2010)

    Article  CAS  Google Scholar 

  10. A. Zolfaghari, G. Jerkiewicz, J. Electroanal. Chem. 467, 177 (1999)

    Article  CAS  Google Scholar 

  11. A. Zolfaghari, M. Chayer, G. Jerkiewicz, J. Electrochem. Soc. 144, 3034 (1997)

    Article  CAS  Google Scholar 

  12. N. Garcia-Araez, J. Phys. Chem. C 115, 501 (2011)

    Article  CAS  Google Scholar 

  13. R. Gomez, J.M. Orts, B. Alvarez-Ruiz, J.M. Feliu, J. Phys. Chem. B 108, 228 (2004)

    Article  CAS  Google Scholar 

  14. N.M. Markovic, T.J. Schmidt, B.N. Grgur, H.A. Gasteiger, R.J. Behm, P.N. Ross, J. Phys. Chem. B 103, 8568 (1999)

    Article  CAS  Google Scholar 

  15. Y. Huang, F.T. Wagner, J. Zhang, J. Jorne, J. Electrochem. Soc. 161, F653 (2014)

    Article  CAS  Google Scholar 

  16. R. Subbaraman, D. Strmcnik, V. Stamenkovic, N.M. Markovic, J. Phys. Chem. C 114, 8414 (2010)

    Article  CAS  Google Scholar 

  17. H. Hanawa, K. Kunimatsu, M. Watanabe, H. Uchida, J. Phys. Chem. C 116, 21401 (2012)

    Article  CAS  Google Scholar 

  18. K. Kodama, R. Jinnnouchi, T. Suzuki, H. Murata, T. Hatanaka, Y. Morimoto, Electrochem. Commun. 36, 26 (2013)

    Article  CAS  Google Scholar 

  19. T. Masuda, F. Sonsudin, P.R. Singh, H. Naohara, K. Uosaki, J. Phys. Chem. C 117, 15704 (2013)

    Article  CAS  Google Scholar 

  20. A. Ohma, K. Fushinobu, K. Okazaki, Electrochim. Acta 55, 8829 (2010)

    Article  CAS  Google Scholar 

  21. G. Attard, A. Brew, K. Hunter, J. Sharman, E. Wright, Phys. Chem. Chem. Phys. 16, 13689 (2014)

    Article  CAS  Google Scholar 

  22. M. Alsabet, M. Grden, G. Jerkiewicz, J. Electroanal. Chem. 589, 120 (2006)

    Article  CAS  Google Scholar 

  23. B.E. Conway, H. Angerstein-Kozlowska, W.A. Sharp, E.E. Criddle, Anal. Chem. 45, 1331 (1973)

    Article  CAS  Google Scholar 

  24. D. Chen, Q. Tao, L.W. Liao, S.X. Liu, Y.X. Chen, S. Ye, Electrocatalysis 2, 207 (2011)

    Article  CAS  Google Scholar 

  25. H. Angerstein-Kozlowska, in Comprehensive Treatise of Electrochemistry, vol. 9, ch. 1, ed. by E. Yeager, J.O.’.M. Bockris, B.E. Conway, S. Sarangapani (Plenum, New York, 1984), p. 15

    Google Scholar 

  26. M. Osawa, M. Tsushima, H. Mogami, G. Samjeske, Y. Akira, J. Phys. Chem. C 112, 4248 (2008)

    Article  CAS  Google Scholar 

  27. A. Zolfaghari, G. Jerkiewicz, W. Chrzanowski, A. Wieckowski, J. Electrochem. Soc. 146, 4158 (1999)

    Article  CAS  Google Scholar 

  28. E.K. Krauskopf, A. Wieckowski, in Adsorption of Molecules at Metal Electrodes, ed. by J. Lipkowski, P.N. Ross (VCH, New York, 1992), p. 119

    Google Scholar 

  29. Y. Shingaya, M. Ito, in Interfacial Electrochemistry, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), p. 287

    Google Scholar 

  30. M.E. Gamboa-Aldeco, E. Herrero, P.S. Zelenay, A. Wieckowski, J. Electroanal. Chem. 348, 451 (1993)

    Article  Google Scholar 

  31. A. Kolics, A. Wieckowski, J. Phys. Chem. B 105, 2588 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Jerkiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuya, Y., Mashio, T., Ohma, A. et al. Thermodynamics of the Under-Potential Deposition of Hydrogen on Polycrystalline Platinum in Aqueous Trifluoromethanesulfonic Acid Solution. Electrocatalysis 6, 109–116 (2015). https://doi.org/10.1007/s12678-014-0227-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0227-9

Keywords

Navigation