Skip to main content
Log in

New Electrocatalysts with Pyrolyzed Siloxane Matrix

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In a first screening, platinum nanoparticles in pyrolyzed siloxane matrices with additional carbon fillers were developed and tested for their use as electrocatalysts. The influence of various parameters - type of carbon filler, carbon content, pyrolysis temperature, and siloxane composition - on structural properties and on electrochemical activity was investigated. Homogeneous distributions of platinum nanoparticles could be obtained for most of these electrocatalysts. Uniform platinum particles were generated with average particle sizes of 2.5–4.7 nm. At a temperature of 300 °C, the siloxane-based electrocatalysts exhibit high thermal stabilities with maximum weight losses of around 8 wt% after 20 h. The electrochemical behavior of the siloxane-based electrocatalysts in contact with 0.1 M H2SO4 was studied by cyclic voltammetry. Electrocatalytic activities were studied by CO adlayer oxidation, which also served for determining the electrochemical active surface area. High electrochemically active surface areas with up to 50 m2 g−1 Pt were obtained, which are in the same range as carbon-based electrocatalysts. Interestingly, some siloxane-based electrocatalysts showed a slightly higher catalytic activity for CO adlayer oxidation than carbon-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D.P. Wilkinson, Z. Liu, S. Holdcroft, J. Pow. Sour. 160, 872 (2006)

    Article  CAS  Google Scholar 

  2. J. McBreen, H. Olender, S. Srinivasan, K.V. Kordesch, J. Appl. Electrochem. 11, 787 (1981)

    Article  CAS  Google Scholar 

  3. E. Antolini, J. Mater. Sci. 38, 2995 (2003)

    Article  CAS  Google Scholar 

  4. E. Antolini, Appl. Catal. B 88, 1 (2009)

    Article  CAS  Google Scholar 

  5. Y. Shao, J. Liu, Y. Wang, Y. Lin, J. Mater. Chem. 19, 46 (2009)

    Article  CAS  Google Scholar 

  6. A. Smirnova, X. Dong, H. Hara, A. Vasiliev, N. Sammes, Int. J. Hydrogen Energ. 30, 149 (2005)

    Article  CAS  Google Scholar 

  7. E. Antolini, E.R. Gonzalez, Solid State Ionics 180, 746 (2009)

    Article  CAS  Google Scholar 

  8. D. Eder, Chem. Rev. 110, 1348 (2010)

    Article  CAS  Google Scholar 

  9. E. Antolini, Appl. Catal. B 100, 413 (2010)

    Article  CAS  Google Scholar 

  10. L. Hu, R. Ceccato, R. Raj, J. Pow, Sour. 196, 69 (2011)

    Article  CAS  Google Scholar 

  11. R. Peña-Alonso, A. Sicurelli, E. Callone, G. Carturan, R. Raj, J. Pow. Sources 165, 315 (2007)

    Article  Google Scholar 

  12. M. Adam, M. Wilhelm, G. Grathwohl, Micropor. Mesopor. Mat. 151, 195 (2012)

    Article  CAS  Google Scholar 

  13. M. Wilhelm, M. Adam, M. Bäumer, G. Grathwohl, Adv. Eng. Mater. 10, 241 (2008)

    Article  CAS  Google Scholar 

  14. T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)

    Article  CAS  Google Scholar 

  15. D.-J. Guo, S.-K. Cui, J. Sol. State Electrochem. 12, 1393 (2008)

    Article  CAS  Google Scholar 

  16. P. Sonström, M. Adam, X. Wang, M. Wilhelm, G. Grathwohl, M. Bäumer, J. Phys. Chem. C 114, 14224 (2010)

    Article  Google Scholar 

  17. J. Cordelair, P. Greil, J. Eur. Ceram. Soc. 20, 1947 (2000)

    Article  CAS  Google Scholar 

  18. S.-P. Rwei, F.H. Ku, K.C. Cheng, Coll. Polymer Sci. 280, 1110 (2002)

    Article  CAS  Google Scholar 

  19. D. Sebastián, J.C. Calderón, J.A. González-Expósito, E. Pastor, M.V. Martínez-Huerta, I. Suelves, R. Moliner, M.J. Lázaro, Int. J. Hydrogen Energ. 35, 9934 (2010)

    Article  Google Scholar 

  20. G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.S. Park, Electrochim. Acta 49 (1451) (2004)

  21. F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, PCCP 7, 385 (2005)

    Article  CAS  Google Scholar 

  22. P. Parthasarathy, A.V. Virkar, J. Pow. Sour. 234, 82 (2013)

    Article  CAS  Google Scholar 

  23. D. Zhao, B. Xu, Angew. Chem. Int. Ed. 45, 4955 (2006)

    Article  CAS  Google Scholar 

  24. N.P. Lebedeva, A. Rodes, J.M. Feliu, M.T.M. Koper, R.A. van Santen, J. Phys. Chem. B 106, 9863 (2002)

    Article  CAS  Google Scholar 

  25. N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, R.A. van Santen, J. Phys. Chem. B 106, 12938 (2002)

    Article  CAS  Google Scholar 

  26. F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Faraday Discuss. 125, 357 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the “Förderprogramm Angewandte Umweltforschung” of the federal state Bremen, Germany. Further support was given by the German Research Foundation (DFG) within the Research Training Group 1375 “Nonmetallic Porous Structures for Physical-Chemical Functions.” We thank Oliver Oppermann from the Institute of Solid State Physics at the University of Bremen for the TEM images. Further, support through the EU-project CATAPULT (GA-No. 325268) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harms, C., Adam, M., Soliman, K.A. et al. New Electrocatalysts with Pyrolyzed Siloxane Matrix. Electrocatalysis 5, 301–309 (2014). https://doi.org/10.1007/s12678-014-0190-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0190-5

Keywords

Navigation