Skip to main content
Log in

The Treatment of Actual Industrial Wastewaters Using Electrochemical Techniques

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of an actual waste which comes from a chemical plant was studied. This effluent is generated in a polymerization unit and is mainly composed of a great variety of organics (including a complex mixture of water-soluble polymers of very different molecular weights) and solvents. The high variability of the organic load in industrial waste stream (4,000–20,000 mg dm−3 of chemical oxygen demand (COD)) makes the study of the system difficult. The results show that the key for an efficient electrolytic treatment is the selection of the anode material. The replacement of dimensional stable anodes by non-active electrodes is technically feasible as it leads to a very efficient process in terms of COD and total organic carbon removal. However, the use of PbO2 favours the release of toxic lead ions to the reaction medium. The efficiencies seem to depend on the pH and supporting electrolyte. This does not seem to be related to the electrochemical process, but to the oxidizability of the pollutant (mainly polymers) that should strongly depend on the pH. It is suspected that some functional groups of the polymer were more easily attacked by reagents electrogenerated under extreme pH values and that hypochlorite is less effective than persulphate. Regarding economic viability, electrochemical oxidation with a boron-doped diamond electrode can be used in an economically adequate way for the pretreatment of waste, but the energy cost necessary to deal with mass transfer limitations made this technique unsuitable for its use in a refining process of the quality of an effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Rajeshwar, J.G. Ibanez, G.M. Swain, Electrochemistry and environment. J. Appl. Electrochem. 24, 1077 (1994)

    CAS  Google Scholar 

  2. G. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11 (2004)

    Article  Google Scholar 

  3. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B: Environ. 87, 105 (2009)

    Article  Google Scholar 

  4. G. Chen, X. Chen, P.L. Yue, Electrochemical behavior of novel Ti/IrO x –Sb2O5–SnO2 anodes. J. Phys. Chem. B 106, 4364 (2002)

    Article  CAS  Google Scholar 

  5. C.A. Martinez-Huitle, M.A. Quiroz, C. Comninellis, S. Ferro, A. De Battisti, Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochim. Acta 50, 949 (2004)

    Article  CAS  Google Scholar 

  6. C.A. Martinez-Huitle, S. Ferro, A. De Battisti, Electrochemical incineration of oxalic acid: role of electrode material. Electrochim. Acta 49, 4027 (2004)

    Article  CAS  Google Scholar 

  7. I. Sirés, E. Brillas, G. Cerisola, M. Panizza, Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes. J. Electroanal. Chem. 613, 151 (2008)

    Article  Google Scholar 

  8. L. Ciríaco, C. Anjo, J. Correia, M.J. Pacheco, A. Lopes, Electrochemical degradation of ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes. Electrochim. Acta 54, 1464 (2009)

    Article  Google Scholar 

  9. Y. Kong, Z.-L. Wang, Y. Wang, J. Yuan, Z.-D. Chen, Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode. New Carbon Mat. 26(459) (2011)

  10. B. Xue, Y. Zhang, J.Y. Wang, Electrochemical oxidation of bisphenol A on Ti/SnO2–Sb2O5/PbO2 anode for waste water treatment. Procedia Env. Sci. 10, 647 (2011)

    Article  CAS  Google Scholar 

  11. Y. Zheng, W. Su, S. Chen, X. Wu, X. Chen, Ti/SnO2–Sb2O5–RuO2/α-PbO2/β-PbO2 electrodes for pollutants degradation. Chem. Eng. J. 174, 304 (2011)

    Article  CAS  Google Scholar 

  12. E. Turro, A. Giannis, R. Cossu, E. Gidarakos, D. Mantzavinos, A. Katsaounis, Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. J. Hazard. Mater. 190, 460 (2011)

    Article  CAS  Google Scholar 

  13. P. Cañizares, J. Lobato, R. Paz, M.A. Rodrigo, C. Sáez, Electrochemical oxidation of phenolic compound wastes with BDD anodes. Water Res. 39, 2687 (2005)

    Article  Google Scholar 

  14. I. Sirés, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, C. Arias, Electrochemical degradation of clofibric acid in water byanodic oxidation. Comparative study with platinum and boron doped diamond electrodes. Electrochim. Acta 52, 75 (2006)

    Article  Google Scholar 

  15. P. Cañizares, R. Paz, J. Lobato, C. Sáez, M.A. Rodrigo, Electrochemical treatment of the effluent of a fine chemical manufacturing plant. J. Hazard. Mater. B138, 173 (2006)

    Article  Google Scholar 

  16. P. Cañizares, R. Paz, C. Sáez, M.A. Rodrigo, Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes: a comparison with other advanced oxidation processes. Electrochim. Acta 53, 2144 (2008)

    Article  Google Scholar 

  17. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109, 6541 (2009)

    Article  CAS  Google Scholar 

  18. M. Panizza, G. Cerisola, Electrochemical degradation of gallic acid on a BDD anode. Chemosphere 77, 1060 (2009)

    Article  CAS  Google Scholar 

  19. C. Flox, C. Arias, E. Brillas, A. Savall, K. Groenen-Serrano, Electrochemical incineration of cresols: a comparative study between PbO2 and boron-doped diamond anodes. Chemosphere 74, 1340 (2009)

    Article  CAS  Google Scholar 

  20. M. Mascia, A. Vacca, A.M. Polcaro, S. Palmas, J. Rodriguez-Ruiz, A. Da Pozzo, Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes: experimental study and mathematical model. J. Hazard. Mater. 174, 314 (2010)

    Article  CAS  Google Scholar 

  21. N. Oturan, M. Hamza, S. Ammar, R. Abdelhédi, M.A. Oturan, Oxidation/mineralization of 2-nitrophenol in aqueous medium by electrochemical advanced oxidation processes using Pt/carbon-felt and BDD/carbon-felt cells. J. Electroanal. Chem. 661, 66 (2011)

    Article  CAS  Google Scholar 

  22. E. Chatzisymeon, A. Dimou, D. Mantzavinos, A. Katsaounis, Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J. Hazard. Mater. 167, 268 (2009)

    Article  CAS  Google Scholar 

  23. E. Lacasa, J. Llanos, P. Cañizares, M.A. Rodrigo, Electrochemical denitrification with chlorides using DSA and BDD anodes. Chem. Eng. J. 184, 66 (2012)

    Article  CAS  Google Scholar 

  24. APHA-AWWA-WPCF. Standard methods for the examination of water and wastewater (20th ed), edited by Clesceri, L.S., Greenberg, A.E., Eaton, A.D. and Franson, M.A.H. Washington DC: American Public Health Association, 1998.

  25. M.A. Rodrigo, P. Cañizares, A. Sánchez-Carretero, C. Sáez, Use of conductive-diamond electrochemical oxidation for wastewater treatment. Catal. Today 151(1–2), 173 (2010)

    Article  CAS  Google Scholar 

  26. B. Marselli, J. García-Gómez, P.A. Michaud, M.A. Rodrigo, C. Comninellis, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150(3), 79 (2003)

    Article  Google Scholar 

  27. C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta 39, 1857 (1994)

    Article  CAS  Google Scholar 

  28. G. Foti, D. Gandini, C. Comninellis, A. Perret, W. Haenni, Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes. Electrochem. Solid-State Lett. 2, 228 (1999)

    Article  CAS  Google Scholar 

  29. K. Serrano, P.A. Michaud, C. Comninellis, A. Savall, Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim. Acta 48, 431 (2002)

    Article  CAS  Google Scholar 

  30. P. Cañizares, F. Larrondo, J. Lobato, M.A. Rodrigo, C. Sáez, Electrochemical synthesis of peroxodiphosphate using boron-doped diamond anodes. J. Electrochem. Soc. 152(11), D191 (2005)

    Article  Google Scholar 

  31. A.M. Polcaro, A. Vacca, M. Mascia, F. Ferrara, Product and by-product formation in electrolysis of dilute chloride solutions. J. Appl. Electrochem. 38, 979 (2008)

    Article  CAS  Google Scholar 

  32. P. Cañizares, C. Sáez, A. Sánchez-Carretero, M.A. Rodrigo, Synthesis of novel oxidants by electrochemical technology. J. Appl. Electrochem. 39(11), 2143 (2009)

    Article  Google Scholar 

  33. P. Cañizares, R. Paz, C. Sáez, M.A. Rodrigo, Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J. Env. Manag. 90(1), 410 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Sáez.

Additional information

Cristina Sáez: ISE member

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáez, C., Cañizares, P., Llanos, J. et al. The Treatment of Actual Industrial Wastewaters Using Electrochemical Techniques. Electrocatalysis 4, 252–258 (2013). https://doi.org/10.1007/s12678-013-0136-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0136-3

Keywords

Navigation