Skip to main content
Log in

Factors Influencing the Formation of Biofilms on Bacilli Model Systems

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The ability to form biofilms in natural isolate Bacillus subtilis 168 and mutants with deleted genes of regulatory proteins AbrB, DegU, CcpA, and SpoOA, constructed on its basis, was investigated to elucidate the pathways regulating biofilm formation in B. subtilis. The B. subtilis 168 wild-type forms a biofilms in the liquid medium with maximum at 48th hour of culture growth. pH optimum for the biofilm formation in the wild-type strain is in the range of 7.4–8.0. Temperature optimum was in the range of 22 to 45 °C. The level of biofilm formation for all regulatory mutants was lower than that in the wild-type for 40–50 %. Temperature and pH optima for the mutant strains are the same as for the wild-type strain—7.4–8 pH and temperature of 22–45 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6, 199–210.

    Article  Google Scholar 

  2. Anderson, G. G., & O’Toole, G. A. (2008). Innate and induced resistance mechanisms of bacterial biofilms. Current Topics in Microbiology and Immunology, 322, 85–105.

    Google Scholar 

  3. Bryers, J. D. (2008). Medical biofilms. Biotechnology and Bioengineering, 100, 1–18.

    Article  Google Scholar 

  4. Hancock, V., & Klemm, P. (2007). Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infection and Immunity, 75(2), 966–976.

    Article  Google Scholar 

  5. Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8, 881–890.

    Article  Google Scholar 

  6. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R., Kolter, R. (2001). Fruiting body formation by Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 98, 11621–11626.

    Article  Google Scholar 

  7. Hamon, M. A., & Lazazzera, B. A. (2001). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Molecular Microbiology, 42, 1199–1209.

    Article  Google Scholar 

  8. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., Kolter, R. (2013). Sticking together: building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology, 11(3), 157–168.

    Article  Google Scholar 

  9. Fujita, M., Gonzalez-Pastor, J. E., Losick, R. (2005). High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. Journal of Bacteriology, 187, 1357–1368.

    Article  Google Scholar 

  10. Chastanet, A., Vitkup, D., Yuan, G.-C., Norman, T. M., Liu, J. S., Losick, R. M. (2010). Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. PNAS, 107(18), 8486–8491.

    Article  Google Scholar 

  11. Strauch, M., Webb, V., Spiegelman, G., Hoch, J. A. (1990). The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proceedings of the National Academy of Sciences of the United States of America, 87, 1801–1805.

    Article  Google Scholar 

  12. Verhamme, D. T., Murray, E. J., Stanley-Wall, N. R. (2009). DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. Journal of Bacteriology, 191, 100–108.

    Article  Google Scholar 

  13. Chumsakul, O., Takahashi, H., Oshima, T., Hishimoto, T., Kanaya, S., Ogasawara, N., et al. (2011). Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Research, 39, 414–428.

    Article  Google Scholar 

  14. Chu, F., Kearns, D. B., McLoon, A., Chai, Y., Kolter, R., Losick, R. (2008). A novel regulatory protein governing biofilm formation in Bacillus subtilis. Molecular Microbiology, 68, 1117–1127.

    Article  Google Scholar 

  15. Murray, E. J., Kiley, T. B., Stanley-Wall, N. R. (2009). A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology, 155, 1–8.

    Article  Google Scholar 

  16. Stanley, N. R., & Lazazzera, B. A. (2005). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Molecular Microbiology, 57, 1143–1158.

    Article  Google Scholar 

  17. Kobayashi, K., & Iwano, M. (2012). BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Molecular Microbiology, 85, 51–66.

    Article  Google Scholar 

  18. Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M., Fujita, Y. (2000). Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Research, 28, 1206–1210.

    Article  Google Scholar 

  19. Fujita, Y. (2009). Carbon catabolite control of the metabolic network in Bacillus subtilis Biosci. Biotechnology and biochemistry, 74(2), 245–259.

    Article  Google Scholar 

  20. Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., et al. (2006). Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology, 152, 2801–2807.

    Article  Google Scholar 

  21. O’Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., Kolter, R. (1999). Genetic approaches to study of biofilms. Methods in Enzymology, 310, 91–109.

    Article  Google Scholar 

  22. Merritt, J.H., Kadouri, D.E., O’Toole, G.A. (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol. Chap.1:Unit 1B.1. doi:10.1002/9780471729259.mc01b01s00.

Download references

Acknowledgments

This work was supported by the subsidy allocated to the Kazan Federal University for the state assignment in the sphere of scientific activities. This work was performed in accordance with the Russian Government Program of Competitive Growth of the Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Rudakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, L., Rudakova, N. & Sharipova, M. Factors Influencing the Formation of Biofilms on Bacilli Model Systems. BioNanoSci. 6, 571–574 (2016). https://doi.org/10.1007/s12668-016-0271-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0271-4

Keywords

Navigation