Skip to main content
Log in

Reusable Green Synthesized Biomimetic Magnetic Nanoparticles for Glucose and H2O2 Detection

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this paper, green synthesis of iron oxide nanoparticles (IONPs) using aqueous extract of banana peel (an industrial agrowaste) and their mimetic behavior as peroxidase enzyme was investigated. The size and shape of purified nanoparticles were estimated by using transmission electron microscopy (TEM) and scanning tunneling microscopy (STM). XRD data confirm their purity and crystalline nature. Vibrating sample magnetometer (VSM) data reveals the magnetic strength of IONPs. FTIR analysis shows that biomolecules present in the banana peel extract are responsible for biosynthesis as well as stabilization of IONPs. Further, the catalytic activity of the IONPs was compared with natural horseradish peroxidase enzyme (HRP). Their comparative kinetic parameters suggest that synthesized IONPs can be used as artificial peroxidase. They can be used five times without any loss in the peroxidase mimicking activity. The synthesized nanoparticles were robust in nature as they can be used at high temperature and have a broad pH range as compared to HRP. They were further used for detection of glucose and H2O2 in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Boyer, C., Whittaker, M. R., Bulmus, V., Liu, J., Davis, T. P. (2010). The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater, 2, 23–30.

    Article  Google Scholar 

  2. Kharisov, B. I., Dias, H. V. R., Kharissova, O. V., Vazquez, A., Pena, Y., Gomez, I. (2014). Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Advances, 4(85), 45354–45381.

    Article  Google Scholar 

  3. Soenen, S. J., Parak, W. J., Rejman, J., Manshian, B. (2015). (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chemical Reviews, 115(5), 2109–2135.

    Article  Google Scholar 

  4. Turcheniuk, K., Tarasevych, A. V., Kukhar, V. P., Boukherroub, R., Szunerits, S. (2013). Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale, 5(22), 10729–10752.

    Article  Google Scholar 

  5. Weinstein, J. S., Varallyay, C. G., Dosa, E., Gahramanov, S., Hamilton, B., Rooney, W. D., et al. (2009). Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab, 30(1), 15–35.

  6. Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., et al. (2005). Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate chemistry, 16(5), 1181–1188.

  7. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211, 317–331.

    Article  Google Scholar 

  8. Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., et al. (2007). Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of biomedical materials research Part A, 80(2), 333–341.

  9. Chin, A. B., & Yaacob, I. I. (2007). Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. Journal of materials processing technology, 191(1), 235–237.

    Article  Google Scholar 

  10. Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker, J. R., Jr., et al. (2009). Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. The Journal of Physical Chemistry C, 113(31), 13593–13599.

  11. Hee Kim, E., Sook Lee, H., Kook Kwak, B., Kim, B.-K. (2005). Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 289, 328–330.

    Article  Google Scholar 

  12. Lu, Y., Yin, Y., Mayers, B. T., Xia, Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Letters, 2(3), 183–186.

    Article  Google Scholar 

  13. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110.

  14. Teja, A. S., & Koh, P.-Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials, 55(1), 22–45.

    Article  Google Scholar 

  15. Hebbalalu, D., Lalley, J., Nadagouda, M. N., Varma, R. S. (2013). Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustainable Chemistry & Engineering, 1(7), 703–712.

    Google Scholar 

  16. Virkutyte J, Varma RS (2013) Green synthesis of nanomaterials: environmental aspects. In: Sustainable Nanotechnology and the Environment: Advances and Achievements, vol 1124. ACS Symposium Series, vol 1124. American Chemical Society, pp 11–39

  17. Alam, M. N., Roy, N., Mandal, D., Begum, N. A. (2013). Green chemistry for nanochemistry: exploring medicinal plants for the biogenic synthesis of metal NPs with fine-tuned properties. RSC Advances, 3(30), 11935–11956.

    Article  Google Scholar 

  18. Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: a review. Journal of Nanotechnology, 2014, 8.

    Article  Google Scholar 

  19. Herrera-Becerra, R., Zorrilla, C., Ascencio, J. A. (2007). Production of iron oxide nanoparticles by a biosynthesis method: an environmentally friendly route. The Journal of Physical Chemistry C, 111(44), 16147–16153.

    Article  Google Scholar 

  20. Cai, Y., Shen, Y., Xie, A., Li, S., Wang, X. (2010). Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 322(19), 2938–2943.

    Article  Google Scholar 

  21. Makarov, V. V., Makarova, S. S., Love, A. J., Sinitsyna, O. V., Dudnik, A. O., Yaminsky, I. V., et al. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 30(20), 5982–5988.

  22. Venkateswarlu, S., Rao, Y. S., Balaji, T., Prathima, B., Jyothi, N. V. V. (2013). Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Materials Letters, 100, 241–244.

    Article  Google Scholar 

  23. Mahdavi, M., Namvar, F., Ahmad, M., Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5), 5954.

    Article  Google Scholar 

  24. Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014). Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4), 364–369.

    Article  Google Scholar 

  25. Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., et al. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nano, 2(9), 577–583.

  26. Chaudhari, K. N., Chaudhari, N. K., Yu, J.-S. (2012). Peroxidase mimic activity of hematite iron oxides with different nanostructures. Catalysis Science & Technology, 2(1), 119–124.

    Article  Google Scholar 

  27. Dong, J., Song, L., Yin, J.-J., He, W., Wu, Y., Gu, N., et al. (2014). Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Applied Materials & Interfaces, 6(3), 1959–1970. doi:10.1021/am405009f.

  28. Hu, L., Yuan, Y., Zhang, L., Zhao, J., Majeed, S., Xu, G. (2013). Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Analytica Chimica Acta, 762, 83–86.

    Article  Google Scholar 

  29. Jv, Y., Li, B., Cao, R. (2010). Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chemical Communications, 46(42), 8017–8019.

    Article  Google Scholar 

  30. Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. Journal of Materials Chemistry, 20(24), 5110–5116.

    Article  Google Scholar 

  31. Xia, X., Zhang, J., Lu, N., Kim, M. J., Ghale, K., Xu, Y., et al. (2015). Pd-Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS nano, 9(10), 9994–10004.

  32. Mishra, A., Ahmad, R., Sardar, M. (2015). Biosynthesized iron oxide nanoparticles mimicking peroxidase activity: application for biocatalysis and biosensing. Journal of Nanoengineering and Nanomanufacturing, 5(1), 37–42.

    Article  Google Scholar 

  33. Bankar, A., Joshi, B., Kumar, A. R., Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1–3), 58–63.

    Article  Google Scholar 

  34. Bos, E., Van der Doelen, A., Nv, R., Schuurs, A. H. (1981). 3, 3′, 5, 5′-tetramethylbenzidine as an Ames test negative chromogen for horse-radish peroxidase in enzyme-immunoassay. Journal of Immunoassay and Immunochemistry, 2(3–4), 187–204.

    Article  Google Scholar 

  35. Ahmad, R., Mishra, A., Sardar, M. (2013). Peroxidase-TiO2 nanobioconjugates for the removal of phenols and dyes from aqueous solutions. Advanced Science, Engineering and Medicine, 5(10), 1020–1025.

    Article  Google Scholar 

  36. Hashemifard, N., Mohsenifar, A., Ranjbar, B., Allameh, A., Lotfi, A. S., Etemadikia, B. (2010). Fabrication and kinetic studies of a novel silver nanoparticles-glucose oxidase bioconjugate. Analytica chimica acta, 675(2), 181–184.

    Article  Google Scholar 

  37. Yu, F., Huang, Y., Cole, A. J., Yang, V. C. (2009). The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials, 30(27), 4716–4722.

    Article  Google Scholar 

  38. Zhou, B., Wang, J., Guo, Z., Tan, H., Zhu, X. (2006). A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regulation, 49(2–3), 113–118.

    Article  Google Scholar 

  39. Gopi, D., Kanimozhi, K., Bhuvaneshwari, N., Indira, J., Kavitha, L. (2014). Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 589–597.

    Article  Google Scholar 

  40. Memon, J. R., Memon, S. Q., Bhanger, M. I., El-Turki, A., Hallam, K. R., Allen, G. C. (2009). Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater. Colloids and Surfaces B: Biointerfaces, 70(2), 232–237.

    Article  Google Scholar 

  41. Anwar, J., Shafique, U., Waheed Uz, Z., Salman, M., Dar, A., Anwar, S. (2010). Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresource Technology, 101(6), 1752–1755.

    Article  Google Scholar 

  42. Bankar, A., Joshi, B., Ravi Kumar, A., Zinjarde, S. (2010). Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 80(1), 45–50.

    Article  Google Scholar 

  43. Bankar, A., Joshi, B., Kumar, A. R., Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Materials Letters, 64(18), 1951–1953.

    Article  Google Scholar 

  44. Yan, D., Zhang, H., Chen, L., Zhu, G., Wang, Z., Xu, H., et al. (2014). Supercapacitive properties of Mn3O4 nanoparticles bio-synthesized from banana peel extract. RSC Advances, 4(45), 23649–23652.

  45. Zhou, G. J., Li, S. H., Zhang, Y. C., Fu, Y. Z. (2014). Biosynthesis of CdS nanoparticles in banana peel extract. Journal of Nanoscience and Nanotechnology, 14(6), 4437–4442.

    Article  Google Scholar 

  46. Thakur, S., & Karak, N. (2014). One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Materials Chemistry and Physics, 144(3), 425–432.

    Article  Google Scholar 

  47. Parmar, H. S., & Kar, A. (2008). Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones. Journal of Medicinal Food, 11(2), 376–381.

    Article  Google Scholar 

  48. Tewari, H. K., Marwaha, S. S., Rupal, K. (1986). Ethanol from banana peels. Agricultural wastes, 16(2), 135–146.

    Article  Google Scholar 

  49. Essien, J. P., Akpan, E. J., Essien, E. P. (2005). Studies on mould growth and biomass production using waste banana peel. Bioresource Technology, 96(13), 1451–1456.

    Article  Google Scholar 

  50. Osma, J. F., Herrera, J. L. T., Couto, S. R. (2007). Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes and Pigments, 75(1), 32–37.

    Article  Google Scholar 

  51. Annadurai, G., Juang, R. S., Lee, D. J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water Science & Technology, 47(1), 185–190.

    Google Scholar 

  52. Dung, T.T., Danh, T.M., Duc, N.H., Chien, D.M. (2009). Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol. Journal of Physics: Conference Series, 187(1), 1–4.

  53. Hsieh, S., Huang, B., Hsieh, S., Wu, C., Wu, C., Lin, P., et al. (2010). Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles. Nanotechnology, 21(44), 445601.

  54. Shal, A. A., & Jafari, A. (2014). Study of structural and magnetic properties of superparamagnetic Fe3O4-ZnO core-shell nanoparticles. Journal of Superconductivity and Novel Magnetism, 27(6), 1531–1538.

    Article  Google Scholar 

  55. Castro, R. S., Caetano, L., Ferreira, G., Padilha, P. M., Saeki, M. J., Zara, L. F., et al. (2011). Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Industrial & Engineering Chemistry Research, 50(6), 3446–3451.

Download references

Acknowledgments

The financial support provided by ICMR, Government of India for providing fund (project No. 35/8/2012-BMS) and fellowship to AM and RA is greatly acknowledged. Authors are highly thankful to Dr. G. Saini, AIF, JNU, New Delhi and R. K. Sharma for helping in TEM and STM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryam Sardar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Ahmad, R., Perwez, M. et al. Reusable Green Synthesized Biomimetic Magnetic Nanoparticles for Glucose and H2O2 Detection. BioNanoSci. 6, 93–102 (2016). https://doi.org/10.1007/s12668-016-0197-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0197-x

Keywords

Navigation