Skip to main content
Log in

Are Carbon Nanotube Microelectrodes Manufactured from Dispersion Stable Enough for Neural Interfaces?

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have been proposed as a promising material to enhance the interface between electrodes and neuronal tissue. It has been demonstrated that nanostructured carbon surfaces have the potential to dramatically improve the recording and stimulation conditions making it an interesting candidate for electrodes in neural implants. Impedance reduction and high-charge injection are only two advantages that should be mentioned here. But when it comes to in vivo applications, other aspects like reliability and long-term stability play an important role, too. Up to now, not much attention has been paid to these issues. Therefore, we focus in this work on the characterization of CNT-coated microelectrodes for neuronal recordings and stimulation, and special attention will be turned to the mechanical stability and the reliability of the nanostructured carbon surfaces. A simple and efficient fabrication process for multi-walled CNT microelectrodes deposited from dispersion is applied in a microelectrode array (MEA) configuration. To investigate impedance reduction, electrode properties are measured by electrochemical impedance spectroscopy and cyclic voltammetry. As expected, nanostructured electrodes show superior electrical characteristics compared to planar gold electrodes. The impedance of the microelectrodes is reduced by a factor of up to 61, and the DC-capacitance is increased by a factor of more than 1,500. Biocompatibility of the proposed device is validated by neuronal cell cultures. Neural activity (action potentials) can be detected after about 2 weeks in vitro using the CNT electrodes. Furthermore, systematic studies of the electrodes’ stability reveal that even after ultrasonic treatment and after 4 weeks in vitro, the electrical characteristics do not change significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nguyen-Vu, B., Chen, H., Cassell, A. M., Andrews, R., Meyyappan, R., Li, J. (2006). Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small, 2(1), 89–94.

    Article  Google Scholar 

  2. Gheith, M., Pappas, T., Liopo, A., Sinani, V., Shim, B., Motamedi, M., et al. (2006). Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Adv Mater, 18(22), 2975–2979.

    Article  Google Scholar 

  3. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M. (2003). Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 3(7), 929–933.

    Article  Google Scholar 

  4. Lin, Y., Lu, F., Tu, Y., Ren, Z. (2004). Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 4(2), 191–195.

    Article  Google Scholar 

  5. Nick, C., Joshi, R., Schneider, J., Thielemann, C. (2012). Three-dimensional carbon nanotube electrodes for extracellular recording of cardiac myocytes. Biointerphases, 7(1–4), 58–64.

    Google Scholar 

  6. Gabriel, G., Gómez, R., Bongard, M., Benito, N., Fernández, E., Villa, R. (2009). Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications. Biosensors and Bioelectronics, 24(7), 1942–1948.

    Article  Google Scholar 

  7. Cogan, S. (2008). Neural stimulation and recording electrodes. Annual Review of Biomedical Engineering, 10(275–309), 2008.

    Google Scholar 

  8. Merill, D. (2010). The electrochemistry of charge injection at the electrode/tissue interface. In D. Zhou & E. Greenbaum (Eds.), Implantable neural prostheses 2 (pp. 85–138). New York: Springer.

    Chapter  Google Scholar 

  9. Gross, G., Rieske, E., Kreutzberg, G., Meyer, A. (1977). A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters, 6(2), 101–105.

    Article  Google Scholar 

  10. Pine, J. (1980). Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods, 2(1), 19–31.

    Article  Google Scholar 

  11. Thiebaud, P., DeRooij, N., Koudelka-Hep, M., Stoppini, L. (1997). Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures. IEEE Transactions on Biomedical Engineering, 44(11), 1159–1163.

    Article  Google Scholar 

  12. Hämmerle, H., Egert, U., Mohr, A., Nisch, W. (1994). Extracellular recording in neuronal networks with substrate integrated microelectrode arrays. Biosensors and Bioelectronics, 9(9), 691–696.

    Article  Google Scholar 

  13. Nisch, W., Böck, J., Egert, U., Hämmerle, H., Mohr, A. (1994). A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. Biosensors and Bioelectronics, 9(9–10), 737–741.

    Article  Google Scholar 

  14. Fejtl, M., Stett, A., Nisch, W., Boven, K., Möller, A. (2006). On micro-electrode array revival: its development, sophistication of recording, and stimulation. In M. Taketani & M. Baudry (Eds.), Advances in network electrophysiology: using multi-electrode arrays (pp. 24–37). New York: Springer.

    Chapter  Google Scholar 

  15. Brüggemann, D., Wolfrum, B., Maybeck, V., Mourzina, Y., Jansen, M., Offenhäusser, A. (2011). Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology, 22, 265104.

    Article  Google Scholar 

  16. Nick, C., Quednau, S., Sarwar, R., Schlaak, H. F., Thielemann, C. (2013). High aspect ratio gold nanopillars on microelectrodes for neural interfaces. Microsystem Technologies. doi:10.1007/s00542-013-1958-x.

    Google Scholar 

  17. Hai, A., Dormann, A., Shappir, J., Yitzchaik, S., Bartic, C., Borghs, G., et al. (2009). Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J R Soc Interface, 6(41), 1153–1165.

    Article  Google Scholar 

  18. Hai, A., Shappir, J., Spira, M. (2010). In-cell recordings by extracellular microelectrodes. Nature Methods, 7(3), 200–202.

    Article  Google Scholar 

  19. Hai, A., Shappir, J., Spira, M. (2010). Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J Neurophys, 104(1), 559–568.

    Article  Google Scholar 

  20. Yang, M., Qu, F., Lu, Y., He, Y., Shen, G., Yu, R. (2006). Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials, 27(35), 5944–5950.

    Article  Google Scholar 

  21. Jin, J.H., Daubinger, P., Fiebich, B., Stieglitz, T. (2011). A novel platinum nanowire-coated neural electrode and its electrochemical and biological characterization. 24th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 1003–1006).

  22. Kozai, T., Langhals, N., Patel, P., Deng, X., Zhang, H., Smith, K., et al. (2012). Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Materials, 11(12), 1065–1073.

    Article  Google Scholar 

  23. Yang, J., & Martin, D. (2004). Microporous conducting polymers on neural microelectrode arrays: II. Physical characterization. Sensors and Actuators A: Physical, 113(2), 204–211.

    Article  Google Scholar 

  24. Ben-Jacob, E., & Hanein, Y. (2008). Carbon nanotube micro-electrodes for neuronal interfacing. J Math Chem, 18(43), 5181–5186.

    Article  Google Scholar 

  25. Gabay, T., Ben-David, M., Kalifa, I., Sorkin, R., Abrams, Z., Ben-Jacob, E., et al. (2007). Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology, 18, 035201.

    Article  Google Scholar 

  26. Shein, M., Greenbaum, A., Gabay, T., Sorkin, R., David-Pur, M., Ben-Jacob, E., et al. (2009). Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomedical Microdevices, 11(2), 495–501.

    Article  Google Scholar 

  27. Shoval, A., Adams, C., David-Pur, M., Shein, M., Hanein, Y., Sernagor, Y. (2009). Carbon nanotube electrodes for effective interfacing with retinal tissue. Front Neuroeng, 2(4), 1–8.

    Google Scholar 

  28. Stamm, B., Schneider, K., Hermann, T., Fleischer, M., Burkhardt, C., Nisch, W., et al. (2012). Carbon nanotube electrodes for neuronal recording and stimulation. 8th Meeting on Substrate-Integrated Microelectrodes (pp. 280–281).

  29. Gambazzi, L., Toma, F., Goff, A., Fuchsberger, K., Cipollone, S., Stelzle, M., et al. (2010). Bidirectional interfacing of carbon nanotube substrates to neuronal networks. 7th Meeting on Substrate-Integrated Microelectrodes (pp. 234–235).

  30. Meitl, M., Zhou, Y., Gaur, A., Jeon, S., Usrey, M., Strano, M., et al. (2004). Solution casting and transfer printing single-walled carbon nanotube films. Nano Letters, 4(9), 1643–1647.

    Article  Google Scholar 

  31. Fuchsberger, K., LeGoff, A., Gerwig, R., Burkhardt, C., Elit, J., Li, Y., et al. (2010). Integration of carbon nanotubes in microelectrode arrays by microcontact printing and electropolymerization for neurostimulation and biosensing applications. 7th Meeting on Substrate-Integrated Microelectrodes (pp. 267–268).

  32. Keefer, E., Botterman, B., Romero, M., Rossi, A., Gross, G. (2008). Carbon nanotube coating improves neuronal recordings. Nature Nanotechnology, 3(7), 434–439.

    Article  Google Scholar 

  33. Gabriel, G., Gómez-Martnez, R., Villa, R. (2008). Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance. Physiol Meas, 29, 203–212.

    Article  Google Scholar 

  34. Bongard, M., Gabriel, G., Villa, R., Gomez, R., Benito, N., Fernandez, E. (2010). Spike recordings from ganglion cell populations using a new type of carbon nanotubes surface multielectrodes. 7th Meeting on Substrate-Integrated Microelectrodes (pp. 259–260).

  35. Bareket-Keren, L., & Hanein, Y. (2013). Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front Neural Circ, 6(122), 1–16.

    Google Scholar 

  36. Saito, R., Dresselhaus, G., Dresselhaus, M. (2001). Physical properties of carbon nanotubes. London: Imperial College Press.

    Google Scholar 

  37. Beecher, P., Servati, P., Rozhin, A., Colli, A., Scardaci, V., Pisana, S., et al. (2007). Ink-jet printing of carbon nanotube thin film transistors. Journal of Applied Physics, 102(4), 043710.

    Article  Google Scholar 

  38. Dujardin, E., Ebbesen, T., Hiura, H., Tanigaki, K. (1994). Capillarity and wetting of carbon nanotubes. Science, 265, 1850–1852.

    Article  Google Scholar 

  39. Barber, A., Cohen, S., Wagner, H. (2005). External and internal wetting of carbon nanotubes with organic liquids. Physical Review B, 71, 115443.

    Article  Google Scholar 

  40. Nick, C., Goldhammer, M., Bestel, R., Steger, F., Daus, A., Thielemann, C. (2013). Drcell—a software tool for the analysis of cell signals recorded with extracellular microelectrodes. Sig Process Int J (SPIJ), 7(2), 96–109.

    Google Scholar 

  41. Nick, C., Bestel, R., Steger, F., Thielemann, C. (2013). Spike detection, sorting and propagation of cell signals recorded with extracellular microelectrodes. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Short Papers No. 3081.

  42. Braet, F., DeZanger, R., Wisse, E. (2003). Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. Journal of Microscopy, 186(1), 84–87.

    Article  MathSciNet  Google Scholar 

  43. Aguilar, J., Bautista-Quijano, J., Avilés, F. (2010). Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polym Lett, 4(5), 292–299.

    Article  Google Scholar 

  44. Bauerdick, S., Burkhardt, C., Kern, D., Nisch, W. (2003). Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication. Biomedical Microdevices, 5(2), 93–99.

    Article  Google Scholar 

  45. Brüggemann, D. (2010). Nanostrukturierte Metallelektroden zur funktionalen Kopplung an neuronale Zellen. Dissertation, Forschungszentrum Jülich.

  46. Gabay, T. (2009). Carbon nanotube microelectrode arrays for neuronal patterning and recording. Dissertation, Tel-Aviv University.

Download references

Acknowledgments

C.N. would like to thank the Studienstiftung des Deutschen Volkes for supporting his research. We also want to thank Prof. R. Hellmann for providing access to the RIE chamber and SEM. Further, we want to thank Prof. H.F. Schlaak from Microtechnology and Electromechanical Systems Laboratory (M+EMS), Institute of Electromechanical Design, Technische Universitaet Darmstadt for kindly granting access to clean room facilities and Karin Boye for sawing the wafer into chips. Finally, we thank Johannes Frieß and Florian Emmerich for carefully proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Nick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nick, C., Thielemann, C. Are Carbon Nanotube Microelectrodes Manufactured from Dispersion Stable Enough for Neural Interfaces?. BioNanoSci. 4, 216–225 (2014). https://doi.org/10.1007/s12668-014-0141-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0141-x

Keywords

Navigation