Skip to main content

Carbon Nanotubes for Neuron–Electrode Interface with Improved Mechanical Performance

  • Chapter
  • First Online:
Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing

Abstract

The capacity of neuronal cells to elicit and propagate action potentials in response to electrical stimulation is harnessed in neuro-prosthetic devices to restore impaired neuronal activity. Recording and stimulating electrodes are accordingly one of the major building blocks of these systems, and extensive investigations were directed to build better performing electrodes. The electrochemical properties of the electrodes have clearly gained a lot of attention in securing an electrode technology suitable for high signal-to-noise recordings as well as low-power and high-efficacy stimulation. In addition to electrochemical considerations, the design of the electrodes has to take into account multitude of other concerns ranging from surface chemistry, electrode stability, biocompatibility, mechanical properties, to manufacturability. It is now widely accepted that the neuron–electrode interface is considerably impacted by physical cues and that the mechanical properties of the electrode have to be carefully addressed to achieve optimal performances. Mechanical properties affect the manner neurons proliferate, adhere, and possibly operate. In this chapter, we will focus on the mechanical properties of the neuron–electrode interface. We begin by reviewing neuronal mechanics and its relevance to electrode design and performance. In particular, we will address surface properties such as roughness and shape as important properties in the realm of neuronal electrodes. The ultimate aim and focus of this chapter will be to introduce carbon nanotube electrodes as a powerful system for improved mechanical performances and to discuss their unique properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., Vaadia, E., and Bergman, H.: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism, Neuron 72, 370–384 (2011)

    Google Scholar 

  2. Zrenner, E., Bartz-Schmidt, K. U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.-P., Gekeler, F., Greppmaier, U., Harscher, A., Kibbel, S., et al.: Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings Biological Sciences/The Royal Society 278, 1489–1497 (2011)

    Google Scholar 

  3. Cogan, S. F.: Neural stimulation and recording electrodes. Annual Review of Biomedical Engineering 10, 275–309 (2008)

    Google Scholar 

  4. Hai, A., Shappir, J., and Spira, M. E.: In-cell recordings by extracellular microelectrodes. Nature Methods 7, 200–202 (2010)

    Google Scholar 

  5. Eshraghi, A. a, Gupta, C., Ozdamar, O., Balkany, T. J., Truy, E., and Nazarian, R.: Biomedical engineering principles of modern cochlear implants and recent surgical innovations. The Anatomical Record (Hoboken) 295, 1957–1966 (2012)

    Google Scholar 

  6. Fernandes, R.A., Diniz, B., Ribeiro, R., and Humayun, M.: Artificial vision through neuronal stimulation. Neuroscience Letters 519, 122–128 (2012)

    Article  Google Scholar 

  7. Schwartz, A. B., Cui, X. T., Weber, D. J., and Moran, D. W.: Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006)

    Article  Google Scholar 

  8. Shahaf, G., and Marom, S.: Learning in networks of cortical neurons. The Journal of Neuroscience 21, 8782–8788 (2001)

    Google Scholar 

  9. O’Shaughnessy, T. J., Gray, S. A., and Pancrazio, J. J.: Cultured neuronal networks as environmental biosensors. Journal of Applied Toxicology 24, 379–385 (2004)

    Article  Google Scholar 

  10. Johnstone, A. F. M., Gross, G. W., Weiss, D. G., Schroeder, O. H.-U., Gramowski, A., and Shafer, T. J.: Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31, 331–350 (2010)

    Article  Google Scholar 

  11. Rajagopalan, J., Tofangchi, A., and Saif, M. T. A.: Drosophila neurons actively regulate axonal tension in vivo. Biophysical Journal 99, 3208–3215 (2010)

    Article  Google Scholar 

  12. Ayali, A.: The function of mechanical tension in neuronal and network development. Integrative Biology: Quantitative Biosciences from Nano to Macro 2, 178–182 (2010)

    Article  Google Scholar 

  13. Dowell-Mesfin, N. M., Abdul-Karim, M.-A., Turner, A. M. P., Schanz, S., Craighead, H. G., Roysam, B., Turner, J. N., and Shain, W.: Topographically modified surfaces affect orientation and growth of hippocampal neurons. Journal of Neural Engineering 1, 78–90 (2004)

    Article  Google Scholar 

  14. Shalek, A. K., Robinson, J. T., Karp, E. S., Lee, J. S., Ahn, D.-R., Yoon, M.-H., Sutton, A., Jorgolli, M., Gertner, R. S., Gujral, T. S., et al.: Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences of the United States of America 107, 1870–1875 (2010)

    Article  Google Scholar 

  15. Mazzatenta, A., Giugliano, M., Campidelli, S., Gambazzi, L., Businaro, L., Markram, H., Prato, M., and Ballerini, L.: Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 27, 6931–6936 (2007)

    Article  Google Scholar 

  16. Mammoto, T., and Ingber, D. E.: Mechanical control of tissue and organ development. Development (Cambridge, England) 137, 1407–1420 (2010)

    Google Scholar 

  17. Rajagopalan, J., and Saif, M. T. A.: MEMS sensors and microsystems for cell mechanobiology. Journal of Micromechanics and Microengineering: Structures, Devices, and Systems 21, 54002–54012 (2011)

    Article  Google Scholar 

  18. Leong, W. S., Wu, S. C., Pal, M., Tay, C. Y., Yu, H., Li, H., and Tan, L. P.: Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype. Journal of Tissue Engineering and Regenerative Medicine 6 Suppl 3, s68–79 (2012)

    Article  Google Scholar 

  19. Baranes, K., Kollmar, D., Chejanovsky, N., Sharoni, A., and Shefi, O.: Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions. Journal of Molecular Histology 43, 437–447 (2012)

    Article  Google Scholar 

  20. Brunetti, V., Maiorano, G., Rizzello, L., Sorce, B., Sabella, S., Cingolani, R., and Pompa, P. P.: Neurons sense nanoscale roughness with nanometer sensitivity. Proceedings of the National Academy of Sciences of the United States of America 107, 6264–6269 (2010)

    Article  Google Scholar 

  21. Anava, S., Greenbaum, A., Ben Jacob, E., Hanein, Y., and Ayali, A.: The regulative role of neurite mechanical tension in network development. Biophysical Journal 96, 1661–1670 (2009)

    Article  Google Scholar 

  22. Maher, M., Pine, J., Wright, J., and Tai, Y.-C.: The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. Journal of Neuroscience Methods 87, 45–56 (1999)

    Article  Google Scholar 

  23. Bray, D.: Mechanical tension produced by nerve cells in tissue culture. Journal of Cell Science 37, 391–410 (1979)

    Google Scholar 

  24. Bray, D.: Axonal growth in response to experimentally applied mechanical tension. Developmental Biology 102, 379–89 (1984)

    Article  Google Scholar 

  25. Bernal, R., Pullarkat, P., and Melo, F.: Mechanical properties of axons. Physical Review Letters 99, 018301 (2007)

    Article  Google Scholar 

  26. Bernal, R., Melo, F., and Pullarkat, P.: Drag force as a tool to test the active mechanical response of PC12 neurites. Biophysical Journal 98, 515–523 (2010)

    Article  Google Scholar 

  27. Hanein, Y., Tadmor, O., Anava, S., and Ayali, A.: Neuronal soma migration is determined by neurite tension. Neuroscience 172, 572–579 (2011)

    Article  Google Scholar 

  28. Sorkin, R., Greenbaum, A., David-Pur, M., Anava, S., Ayali, A., Ben-Jacob, E., and Hanein, Y.: Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20, 015101 (2009)

    Article  Google Scholar 

  29. Xie, C., Hanson, L., Xie, W., Lin, Z., Cui, B., and Cui, Y.: Noninvasive neuron pinning with nanopillar arrays. Nano Letters 10, 4020–4 (2010)

    Article  Google Scholar 

  30. Bareket-Keren, L., and Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Frontiers in Neural Circuits 6, 122 (2012). doi: 10.3389/fncir.2012.00122

    Google Scholar 

  31. Gabay, T., Ben-David, M., Kalifa, I., Sorkin, R., Abrams, Z. R., Ben-Jacob, E., and Hanein, Y.: Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology 18, 035201 (2007)

    Article  Google Scholar 

  32. Zhang, X., Prasad, S., Niyogi, S., Morgan, A., Ozkan, M., and Ozkan, C.: Guided neurite growth on patterned carbon nanotubes. Sensors and Actuators B: Chemical 106, 843–850 (2005)

    Article  Google Scholar 

  33. Gabay, T., Jakobs, E., Ben-Jacob, E., and Hanein, Y.: Engineered self-organization of neural networks using carbon nanotube clusters. Physica A: Statistical Mechanics and Its Applications 350, 611–621 (2005)

    Article  Google Scholar 

  34. Greenbaum, A., Anava, S., and Ayali, A.: One-to-one neuron–electrode interfacing. Journal of Neuroscience Methods 182, 219–224 (2009)

    Article  Google Scholar 

  35. Shein, M., Greenbaum, A., Gabay, T., Sorkin, R., David-Pur, M., Ben-Jacob, E., and Hanein, Y.: Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomedical Microdevices 11, 495–501 (2009)

    Article  Google Scholar 

  36. Shoval, A., Adams, C., David-Pur, M., Shein, M., Hanein, Y., and Sernagor, E.: Carbon nanotube electrodes for effective interfacing with retinal tissue. Frontiers in Neuroengineering 2, 4 (2009)

    Article  Google Scholar 

  37. Eleftheriou, C. G., Zimmermann, J., Kjeldsen, H., David-Pur, M., Hanein, Y., and Sernagor, E.: Towards the development of carbon nanotube based retinal implant technology: electrophysiological and ultrastructural evidence of coupling at the hybrid interface. Proceedings of the 8th International MEA Meeting on Substrate Integrated Microelectrode Arrys. Reutlingen, Germany (2012)

    Google Scholar 

  38. Janders, M., Egert, U., Stelzle, M., and Nisch, W.: Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Amsterdam: IEEE), 245–247 (1996)

    Google Scholar 

  39. Shein Idelson, M., Ben-Jacob, E., and Hanein, Y.: Innate synchronous oscillations in freely-organized small neuronal circuits. PLoS One 5, e14443 (2010)

    Article  Google Scholar 

  40. Sirivisoot, S., Yao, C., Xiao, X., Sheldon, B. W., and Webster, T. J.: Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 18, 365102 (2007)

    Article  Google Scholar 

  41. Gabriel, G., Gómez-Martínez, R., and Villa, R.: Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance. Physiological Measurement 29, S203–212 (2008)

    Article  Google Scholar 

  42. Minnikanti, S., and Peixoto, N.: Carbon nanotubes applications on electron devices. In: J. M. Marulanda (ed.), Implantable electrodes with carbon nanotube coatings. InTech: Croatia (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Hanein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rand, D., Hanein, Y. (2014). Carbon Nanotubes for Neuron–Electrode Interface with Improved Mechanical Performance. In: De Vittorio, M., Martiradonna, L., Assad, J. (eds) Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8038-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8038-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8037-3

  • Online ISBN: 978-1-4899-8038-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics