Skip to main content

Advertisement

Log in

An inventory modeling analysis of hydrogen fueling station capacity considering an outside option

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

A number of issues have to be addressed in order for a hydrogen economy to become a reality, including the need to expand hydrogen infrastructure to accommodate vehicular needs. The design of a hydrogen station is a complex problem that entails the determination of numerous operating parameters including the overall hydrogen fueling station capacity. In this paper, a newsvendor formulation is selected to form the basis of capacity determination, in particular, the classical formulation with an outside option that reflects the added value that a consumer might give to hydrogen. This study demonstrates the behavior of optimal capacity decisions for hydrogen stations related to demand distribution, consumer behavior, and economics of hydrogen fuel. Moreover, through assessing the consequences of adding extra capacity for stimulating demand, this paper suggests opportunities for additional profits. The results from our study highlight the effect that consumer beliefs have on demand and optimal station size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(A\) :

Equivalent uniform cost of capital investment per period

\(\tilde{A}\) :

Capital investment \(A\) for the optimal capacity \(\tilde{C}\)

\(A^*\) :

Capital investment A for the optimal capacity \(C^*\)

\(A^\prime \) :

(\({=}dA/dC\)) derivative of capital investment \(A\) w.r.t. capacity \(C\)

\(A_s\) :

(\({=}\partial A/\partial s\)) partial derivative of capital investment \(A\) w.r.t normalized capacity \(s\)

\(A_{\hat{u}}\) :

(\({=}\partial A/\partial \hat{u}\)) partial derivative of capital investment \(A\) w.r.t neutral utility \(\hat{u}\)

\(A_O\) :

\(({=}\partial A/\partial O\)) partial derivative of capital investment \(A\) w.r.t cdf \(O(\hat{u})\)

\(B\) :

Net operating profit per period

\(C\) :

Capacity of the hydrogen fueling station

\(\tilde{C}\) :

Optimal capacity if consumers’ purchasing behavior is independent of station capacity

\(C^*\) :

Optimal capacity if consumers’ purchasing behavior is dependent of station capacity

\(c_O\) :

Unit production cost per period

\(cr\) :

Critical ratio

\(F(x)\) :

Cumulative distribution function (cdf) of demand \(X\)

\(f(x)\) :

Probability density function (pdf) of demand \(X\)

\(h\) :

Inventory holding cost

\(I\) :

Capital Investment

\(i\) :

Effective interest rate per period

\(l\) :

Unit salvage value

\(N\) :

The number of periods within the service life

\(O(u)\) :

Cumulative distribution function (cdf) of utility \(u\)

\(o(u)\) :

Probability density function (pdf) of utility \(u\)

\(p\) :

Hydrogen selling price

\(r\) :

Service rate

\(\tilde{r}\) :

Service rate given the normalized capacity \(\tilde{s}\)

\(r^*\) :

Service rate given the normalized capacity \(s^*\)

\(s\) :

(\({=}C/O(\hat{u})\)) normalized capacity

\(\tilde{s}\) :

Normalized capacity corresponding to capacity \(\tilde{C}\)

\(s^*\) :

Normalized capacity corresponding to capacity \(C^*\)

\(u\) :

Utility consumers place on one unit of outside option

\(\hat{u}\) :

Utility of consumers who are indifferent between hydrogen and the outside option

\(\bar{u}\) :

Mean value of utility \(u\)

\(v\) :

Value consumers place on one unit of hydrogen fuel

\(X\) :

Aggregate demand per period (iid random variables)

\(\bar{x}\) :

Mean value of demand \(X\)

\(x^-\) :

Lower limit of demand \(X\)

\(x^+\) :

Upper limit of demand \(X\)

\(y\) :

Production throughput per period

\(\pi \) :

Net profit per period

\(\tilde{\pi }\) :

Net profit per period at the normalized capacity \(\tilde{s}\)

\(\pi ^*\) :

Net profit per period at the normalized capacity s*

References

  1. Davies, J., Grant, M., Venezia, J., Aamidor, J.: Greenhouse gas emissions of the U.S. transportation sector: trends, uncertainties, and methodological improvements. Transp. Res. Rec. 2017, 41–46 (2007)

    Article  Google Scholar 

  2. International Energy Agency, World Energy Outlook (2008). http://www.worldenergyoutlook.org/. Accessed April 24, 2010

  3. Thomas, C.E., Kuhn Jr, I.F., Lomax Jr, F.D., Baum, G.N.: Affordable hydrogen supply pathways for fuel cell vehicles. Int. J. Hydrogen Energy 23(6), 507–516 (1998)

    Article  Google Scholar 

  4. Ogden, J.M.: Prospects for building a hydrogen energy infrastructure. Annu. Rev. Energy Environ. 24, 227–279 (1999)

    Article  Google Scholar 

  5. Edwards, P.P., Kuznetsov, V.I., David, W.I.F., Brandon, N.P.: Hydrogen and fuel cells: towards a sustainable future. Energy Policy. 36(12), 4356–4362 (2008)

    Article  Google Scholar 

  6. Whitin, T.: 1955: Inventory control and price theory. Manage. Sci. 2(1), 61–68 (1995)

    Article  Google Scholar 

  7. Dana, J.D., Petruzzi, N.C.: Note: the newsvendor model with endogenous demand. Manage. Sci. 47(11), 1488–1497 (2001)

    Article  MATH  Google Scholar 

  8. Mercuri, R., Bauen, A., Hart, D.: Options for refueling hydrogen fuel cell vehicles in Italy. J. Power Sources 106(1–2), 353–363 (2002)

    Article  Google Scholar 

  9. Joffe, D., Hart, D., Bauen, A.: Modelling of hydrogen infrastructure for vehicle refueling in London. J. Power Sources 131(1–2), 13–22 (2004)

    Article  Google Scholar 

  10. O’Garra, T., Mourato, S., Pearson, P.: Analyzing awareness and acceptability of hydrogen vehicles: a London case study. Int. J. Hydrogen Energy 30(6), 649–659 (2005)

    Article  Google Scholar 

  11. Brey, J.J., Brey, R., Carazo, A.F., Contreras, I., Hernandez-Diaz, A.G., Gallardo, V.: Designing a gradual transition to a hydrogen economy on spain. J. Power Sources 159(2), 1231–1240 (2006)

    Google Scholar 

  12. Farrell, A.E., Keith, D.W., Corbett, J.: A strategy for introducing hydrogen into transportation. Energy Policy. 31(13), 1357–1367 (2003)

    Article  Google Scholar 

  13. Lin, Z., Chen, C., Ogden, J., Fan, Y.: The least-cost hydrogen for southern California. Int. J. Hydrogen Energy 33(12), 3009–3014 (2008)

    Article  Google Scholar 

  14. Johnson, N., Yang, C., Ogden, J.: A GIS-based assessment of coal-based hydrogen infrastructure deployment in the State of Ohio. Int. J. Hydrogen Energy 30(20), 5287–5303 (2008)

    Article  Google Scholar 

  15. Almansoori, A., Shah, N.: Design and operation of a future hydrogen supply chain: snapshot model. Chem. Eng. Res. Design 84(A6), 423–438 (2006)

    Google Scholar 

  16. Lin, Z., Ogden, J., Fan, Y., Sperling, D.: The hydrogen transition model (HIT) and its application in optimizing a 50-year hydrogen infrastructure for urban Beijing. University of California, Davis, Institute of Transportation Studies (2006)

  17. Tzimas, E., Castello, P., Peteves, S.: The evolution of size and cost of a hydrogen delivery infrastructure in Europe in the medium and long term. Int. J. Hydrogen Energy 32(10–11), 1355–1368 (2007)

    Google Scholar 

  18. Ball, M., Wietschel, M., Rentz, O.: Integration of a hydrogen economy into the German energy system: an optimizing modeling approach. Int. J. Hydrogen Energy 32(10–11), 1355–1368 (2007)

    Article  Google Scholar 

  19. Kim, J., Moon, I.: Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization. Int. J. Hydrogen Energy 33(21), 5887–5896 (2008)

    Article  Google Scholar 

  20. Martin, K.B., Grasman, S.E.: An assessment of wind-hydrogen systems for light duty vehicles. Int. J. Hydrogen Energy 34(16), 6581–6588 (2009)

    Article  Google Scholar 

  21. Hugo, A., Rutter, P., Pistikopoulos, S., Amorelli, A., Zoia, G.: Hydrogen infrastructure strategic planning using multi-objective optimization. Int. J. Hydrogen Energy 30(15), 1523–1534 (2005)

    Article  Google Scholar 

  22. Greene, D.L., Leiby, P.N.: HyTrans model: analyzing the transition to hydrogen-powered transportation. FY 2007 DOE Hydrogen Program Annual Progress Report, pp. 1218–1221 (2007)

  23. Struben, J., Sterman, J.: Transition challenges for alternative fuel vehicle and transportation systems. Environ. Plan. B Plan. Design. 35(6), 1070–1097 (2007)

    Article  Google Scholar 

  24. Ogden, J.M.: Developing an infrastructure for hydrogen vehicles: a southern California case study. Int. J. Hydrogen Energy 24(8), 709–730 (1999)

    Article  Google Scholar 

  25. Melaina, M.W.: Initiating hydrogen infrastructure: preliminary analysis of a sufficient number of initial hydrogen stations in the US. Int. J. Hydrogen Energy 28(7), 743–755 (2003)

    Article  Google Scholar 

  26. Nicholas, M.A., Handy, S.L., Sperling, D.: Using GIS to evaluate siting and networks of hydrogen stations. Transp. Res. Rec. J. Transp. Res. Board. 1880, 126–134 (2004)

    Article  Google Scholar 

  27. Melendez M., Milbrandt, A.: Hydrogen Transition, Analysis, NREL/TP-540-38351 (2006)

  28. Schwoon, M.: A tool to optimize the initial distribution of hydrogen fueling stations. Transp. Res. Part D Transp. Environ. 12(2), 70–82 (2007)

    Article  Google Scholar 

  29. Stiller, C., Seydel, P., Bunger, U., Wietschel, M.: Early hydrogen user centres and corridors as part of the European hydrogen energy roadmap (HyWays). Int. J. Hydrogen Energy 33(16), 4193–4208 (2008)

    Article  Google Scholar 

  30. Nicholas, M., Ogden, J.: Detailed analysis of urban station siting for California hydrogen highway network. Transp. Res. Rec. 2006, 129–139 (2007)

    Google Scholar 

  31. Weinert, J.X., Liu, S., Ogden, J.M., Ma, J.: Hydrogen refueling station costs in Shanghai. Int. J. Hydrogen Energy 32(16), 4089–4100 (2007)

    Article  Google Scholar 

  32. Yang, C., Ogden, J.: Determining the lowest-cost hydrogen delivery mode. Int. J. Hydrogen Energy. 32(2), 268–286 (2007)

    Article  Google Scholar 

  33. Department of Energy. DOE Hydrogen Analysis Project (2009). http://hydrogen.energy.gov/h2a_analysis.html. Last Accessed April 24, 2010

  34. Keles, D., Wietschel, M., Most, D., Rentz, O.: Market penetration of fuel cell vehicles-analysis based on agent behavior. Int. J. Hydrogen Energy. 33(16), 4444–4455 (2008)

    Article  Google Scholar 

  35. Manne, A.: Capacity expansion and probabilistic growth. Econometrica. 29(4), 632–649 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  36. Giglio, R.: Stochastic capacity models. Manage. Sci. 17(3), 174–184 (1970)

    Google Scholar 

  37. Luss, H.: Operations research and capacity expansion problems: a review. Oper. Res. 30(5), 907–947 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pindyck, T.S.: Irreversible investment, capacity choice, and the value of the firm. Am. Econ. Rev. 78(5), 969–985 (1988)

    Google Scholar 

  39. Bean, J., Higle, J., Smith, R.: Capacity expansion under stochastic demands. Oper. Res. 40(2), S210–S216 (1992)

    Article  Google Scholar 

  40. Dixit, A., Pindyck, R.S.: Investment under Uncertainty. In: Ch. Incremental Investment and Capacity Choice. Princeton University Press, Princeton (1994)

  41. Dixit, A.: Irreversible investment with uncertainty and scale economies. J. Econ. Dyn. Control 19(1), 327–350 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Eberly, J., Van Mieghem, J.: Multi-factor dynamic investment under uncertainty. J. Econ. Theory. 75(2), 345–387 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Bollen, N.P.B.: Real options and product life cycles. Manage. Sci. 45(5), 670–684 (1999)

    Article  MATH  Google Scholar 

  44. Dangl, T.: Investment and capacity choice under uncertain demand. Eur. J. Oper. Res. 117(3), 415–428 (1999)

    Article  MATH  Google Scholar 

  45. Birge, J.R.: Option methods for incorporating risk into linear capacity planning models. Manuf. Service Oper. Manage. 2(1), 19–31 (2000)

    Article  Google Scholar 

  46. Van Mieghem, J.: Capacity management, investment, and hedging: review and recent developments. Manuf. Service Oper. Manage. 5(4), 269–302 (2003)

    Article  Google Scholar 

  47. Wu, S.D., Erkoc, M., Karabuk, S.: Management capacity in the high-tech industry: a review of literature. Eng. Econom. 50(2), 125–158 (2005)

    Article  Google Scholar 

  48. Chuang, A.S.: A game-theoretic model for generation expansion planning: problem formulation and numerical comparisons. IEEE Trans. Power Syst. 16(4), 885–891 (2001)

    Article  MathSciNet  Google Scholar 

  49. Murphy, F.H., Smeers, Y.: Generation capacity expansion in imperfectly competitive restructured electricity market. Oper. Res. 53(4), 646–661 (2005)

    Article  MATH  Google Scholar 

  50. Kaymaz, P., Valenzuela, J., Park, C.S.: Transmission congestion and competition on power generation expansion. IEEE Trans. Power Syst. 22(1), 156–163 (2007)

    Article  Google Scholar 

  51. Wang, J.: Strategic generation capacity expansion planning with incomplete information. IEEE Trans. Power Syst. 24(2), 1002–1010 (2009)

    Article  Google Scholar 

  52. Nanduri, V.: Generation capacity expansion in energy markets using a two-level game-theoretic model. IEEE Trans. Power Syst. 24(3), 1165–1172 (2009)

    Article  Google Scholar 

  53. Agrawal, V., Seshadri, S.: Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem. Manuf. Service Oper. Manage. 2(4), 410–423 (2000)

    Article  Google Scholar 

  54. Porteus, E.: Stochastic inventory theory. In: Stochastic Models. North Holland, Amsterdam (1990)

  55. Khouja, M.: The single-period (news-vendor) problem: literature review and suggestions for future research. Omega 27(5), 537–553 (1999)

    Article  Google Scholar 

  56. Petruzzi, N., Dada, M.: Pricing and the newsvendor problem: a review with extensions. Oper. Res. 47(2), 183–194 (1999)

    Article  MATH  Google Scholar 

  57. Kalyanam, K.: Pricing decisions under uncertainty: a Bayesian mixture model approach. Market. Sci. 15(3), 207–22 (1996)

    Article  Google Scholar 

  58. Balakrishnan, A., Pangburn, M.S., Stavrulaki, E.: Stack them high, let ’em fly: Lot-sizing policies when inventories stimulate demand. Manage. Sci. 50(5), 630–644 (2004)

    Article  MATH  Google Scholar 

  59. Bensoussan, A., Cakanyildirim, M., Sethi, S.: A multiperiod newsvendor problem with partially observed demand. Math. Oper. Res. 32(2), 322–344 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Chung, C., Flynn, J., Zhu, J.: The newsvendor problem with an in-season price adjustment. Eur. J. Oper. Res. 198(1), 148–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. Chen, F.Y., Xu, M., Zhang, G.: A risk-averse newsvendor model under CVaR decision criterion. Oper. Res. 57(4), 1040–1044 (2009)

    Article  MATH  Google Scholar 

  62. Silver, E.A., Pyke, D.F., Peterson, R.: Inventory Management and Production Planning and Scheduling. Wiley, New York (1998)

    Google Scholar 

  63. Deneckere, R., Peck, J.: Competition over price and service rate when demand is stochastic: a strategic analysis. RAND J. Econ. 26, 148–162 (1995)

    Article  Google Scholar 

  64. Melaina, M.W. : Estimating relative station sizes in early hydrogen station networks. 16th Annual National Hydrogen Association: Partnering for the Global Hydrogen Future. National Hydrogen Association. Washington D.C., March 29–April 1 (2005)

  65. Grasman, S.E., Liu, Z., Martin, K.B.: Transitional hydrogen supply chain infrastructure modeling. National Hydrogen Association Annual Conference, Sacramento, April (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Grasman.

Appendix

Appendix

1.1 Proof of Lemma 1:

The capital investment, \(f(C)\), is a function of the capacity, \(C\). We define the first order derivative of \(f\) with respect to \(C\), \(df/dC\), by \(f^\prime \). According to Eq. (3), \(C\) is equal to the product of the normalized capacity, \(s\), and the cumulative distribution function, \(O(\hat{u})\); that is, \(C=sO(\hat{u})\). Therefore, \(f(C)\) is a function of \(s\) and \(\hat{u}\); moreover, \(f_s\triangleq \frac{\partial f}{\partial s}=\frac{d f}{dC}\frac{\partial C}{\partial s}= f^\prime O(\hat{u})\), \(f_O\triangleq \frac{\partial f}{\partial O} =\frac{d f}{dC} \frac{\partial C}{\partial O}=f^\prime s\), and \(f_{\hat{u}}\triangleq \frac{\partial f}{\partial {\hat{u}}} = \frac{df}{dC}\frac{\partial C}{\partial O}\frac{dO(\hat{u})}{du} = f^\prime s o(\hat{u})\) where \(o(u)\) is the probability density function of the outside option’s utility, \(u\). Therefore, \(f_{\hat{u}}/o(\hat{u})=f^\prime s = f_O\) and \(sf_s=O(\hat{u})f_O=f^\prime sO(\hat{u})=f^\prime C\). \(\square \)

1.2 Proof of Lemma 2:

Equation (6) shows that the neutral utility, \(\hat{u}\), is equal to zero if the customers’ utility of purchasing hydrogen, \(v-p\), is equal to zero. Under this condition, \(\hat{u}\) is not affected by the choice of standardized capacity, \(s\). Moreover, Eq. (5) indicates that the service rate, \(r(s)\), is not affected by the change in \(s\) if \(s\) is outside the range of \([x^-, x^+]\). Therefore, if \(v-p>0\) and \(x^-\le s\le x^+\), the choice of capacity, \(s\), can influence the service rate, \(r(s)\), which in turn impacts the neutral utility, \(\hat{u}\). \(\square \)

1.3 Proof of Proposition 1:

When \(s\ge x^+\), \(\frac{\partial E[\pi ]}{\partial s}=-O(\hat{u})(c_O+h-l+A^\prime )<0\) because \(c_O>l\), \(h>0\) and \(A^\prime \ge 0\). Therefore, if there exists a value of \(s\), less than \(x^+\), such that \(p-c_O-(p+h-l)F(s)-A^\prime >0\), then \(\frac{\partial E[\pi ]}{\partial s}>0\) at that \(s\) value. \(A^\prime \) is continuous at any value of \(s\) under Assumption 1; therefore, \(\frac{\partial E[\pi ]}{\partial s}=O(\hat{u})\{(p-c_O)-(p+h-l)F(s)-A^\prime \}\) is also continuous at any value of \(s\). This indicates that there must exist \(\tilde{s}\) that satisfies \(\tilde{s}<x^+\) and \(\frac{\partial E[\pi ]}{\partial s}\left|_{s=\tilde{s}}\right.=0.\)

Assume \(s_1\) and \(s_2\) are two different values of \(s\) on \([x^-, x^+]\) and they both solve \(\frac{\partial E[\pi ]}{\partial s}=0\). Without loss of generality, we assume \(s_1<s_2\). Let \(g(s,\hat{u})=p-c_O-(p+h-l)F(s)-A^\prime (s,\hat{u})\), then \(g(s_1,\hat{u}_1)=g(s_2,\hat{u}_2)=0\). \(A^\prime (s_1,\hat{u}_1)>A^\prime (s_2,\hat{u}_2)\) because \(F(s_1)<F(s_2)\), which contradicts to \(\frac{dA^\prime }{ds}=\frac{dC}{ds}A^{\prime \prime }\ge 0\). Therefore, the solution to \(\frac{\partial E[\pi ]}{\partial s}=0\) must be unique. \(\square \)

1.4 Proof of Proposition 2:

When \(s=\tilde{s}\), \(\frac{dE[\pi ]}{ds}=\frac{\tilde{o}}{\tilde{O}^2}\frac{v-p}{\bar{s}}[1-\tilde{F}][E[\tilde{\pi }]-(\tilde{A}^\prime \tilde{C}-\tilde{A})]>0\) according to Lemma 3. When \(s\ge x^+\), \(\frac{dE[\pi ]}{ds}=-O(\hat{u})(c_O+h-l+A^\prime )<0\). \(\frac{dE[\pi ]}{ds}\) is continuous at any value of \(s\). Therefore, there must exist \(s^*\) that satisfies \(\tilde{s}\le s^*\le x^+\) and \(\frac{dE[\pi ]}{ds}\left|_{s=s^*}\right.=0.\)

We take the second order derivative of the expected profit to \(s\) at \(s^*\):

$$\begin{aligned} \left.\frac{d^2E[\pi (s, \hat{u})]}{ds^2}\right|_{s=s^*}\!=\! O(\hat{u}) \left.\left\{ \begin{array}{lllll}&-(p+h-l)f(s)\\&+\frac{d(o(\hat{u})/O(\hat{u})^2)}{d\hat{u}}\frac{(v-p)^2}{\bar{x}^2}[1\!-\!F(s)]^2(E[\pi ]\!+\!A\!-\!CA^\prime )\\&-\frac{o(\hat{u})}{O(\hat{u})^2}\frac{v-p}{\bar{x}}f(s)(E[\pi ]+A-CA^\prime )\\&-\frac{o(\hat{u})}{O(\hat{u})^2}\frac{v-p}{\bar{x}}[1-F(s)]\left(C\frac{dA^{\prime }}{ds}\right)\\&-\frac{dA^\prime }{ds}\\ \end{array} \right\} \right| \begin{array}{llllll}&\\&\\&\\&\\&\\&_{s=s^*} \end{array} \end{aligned}$$

The first term in the bracket is nonpositive since \(p+h-l>0\) and \(f(s)\le 0\) for any value of \(s\). Lemma 4 has shown that \(E[\pi ^*]+A^*-C{A^\prime }^*\) is nonnegative; therefore the second term in the bracket is nonpositive if \(\frac{d(o(\hat{u})/O(\hat{u})^2)}{d\hat{u}}\le 0\). Let \(R(\hat{u})=o(\hat{u})/O(\hat{u})\), then \(\frac{d(o(\hat{u})/O(\hat{u})^2)}{d\hat{u}} = \frac{d(R/O)}{d\hat{u}} = \frac{R^\prime O-Ro}{O^2}=(R^\prime -R^2)/O\). \(\frac{d(o(\hat{u})/O(\hat{u})^2)}{d\hat{u}}\le 0\) if \(R^\prime \le R^2\). Most probability distributions support \(R^\prime \le R^2\). Therefore, we can say that the second term in the bracket is also nonpositive. The third term is nonpositive according to Lemma 4. The last two terms in the bracket are nonpositive if \(A\) is convex since \(\frac{dA^{\prime }}{ds}=\frac{dC}{ds}A^{\prime \prime }\ge 0\). The convexity of \(A\) ensures that \(\frac{d^2E[\pi (s, \hat{u})]}{ds^2}\left|_{s=s^*}\right.\le 0\), which suggests that the global optimum occurs at \(s^*\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasman, S.E., Qin, R. & Martin, K.B. An inventory modeling analysis of hydrogen fueling station capacity considering an outside option. Energy Syst 4, 195–217 (2013). https://doi.org/10.1007/s12667-012-0074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-012-0074-9

Keywords

Navigation