Skip to main content

Advertisement

Log in

Modular development of an inline monitoring system for waterborne pathogens in raw and drinking water

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The state-of-the-art monitoring of drinking water hygiene is based on the cultivation and enumeration of indicator bacteria. Despite its proven reliability, this approach has the disadvantages of being (a) relatively slow and (b) limited to a small number of indicator bacteria. Ideally, alternative methods would be less time-consuming while providing information about a larger set of hygienically relevant microorganisms including viruses. In this paper, we present insights into the design of a modular concentration and detection system for bacteria, bacteriophages and viruses. Following further validation, this or similar techniques have the potential to extend and speed up the monitoring of raw and drinking water hygiene in the future. The system consists of different modules for the concentration of microorganisms, an amplification and detection unit that includes a module for the differentiation between live and dead microorganisms, and an automated system for decision support and self-diagnosis. The ongoing testing under controlled laboratory conditions and real-life conditions in the water supply industry yields further system improvements. Moreover, the increased sensitivity and broader range of microbiological parameters emphasize the need for a reconsideration of the currently used criteria for the assessment of (drinking) water hygiene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd El Wahed A, El-Deeb A, El-Tholoth M, Abd El Kader H, Ahmed A, Hassan S, Hoffmann B, Haas B, Shalaby MA, Hufert FT, Weidmann M (2013a) A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS ONE 8(8):e71642. doi:10.1371/journal.pone.0071642

    Article  Google Scholar 

  • Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M (2013b) Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. doi:10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364

    Google Scholar 

  • Abd El Wahed A, Patel P, Faye O, Thaloengsok S, Heidenreich D, Matangkasombut P, Manopwisedjaroen K, Sakuntabhai A, Sall AA, Hufert FT, Weidmann M (2015a) Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS ONE 10(6):e0129682. doi:10.1371/journal.pone.0129682

    Article  Google Scholar 

  • Abd El Wahed A, Weidmann M, Hufert FT (2015b) Diagnostics-in-a-suitcase: development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol 69:16–21. doi:10.1016/j.jcv.2015.05.004

    Article  Google Scholar 

  • APHA, AWWA, AEF (1998) Standard Methods for the Examination of Water and Waste Water, 20th ed. Washington, DC, USA: American Public Health Association, American Water Works Association and Water Environment Federation

  • Arnalich S (2011) EPANET and development: how to calculate water networks by computer. Arnalich Water and Habitat, Alméria

    Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1989) Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem 264(34):20509–20512

    Google Scholar 

  • Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11(8):1420–1430. doi:10.1039/c0lc00666a

    Article  Google Scholar 

  • Auckenthaler A, Huggenberger P (eds) (2002) Pathogene Mikroorganismen im Grund- und Trinkwasser. Transport – Nachweismethoden – Wassermanagement. Springer, Basel

    Google Scholar 

  • Austin RG, van Bloemen Waanders B, McKenna SA, Choi CY (2008) Mixing at cross junctions in water distribution systems. II: experimental study. J Water Res Pl 134(3):295–302. doi:10.1061/(ASCE)0733-9496(2008)134:3(295)

    Article  Google Scholar 

  • Berney M, Weilenmann HU, Egli T (2006) Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiology 152(6):1719–1729

    Article  Google Scholar 

  • Bernt M, Naumann M (2006) Wenn der Hahn zu bleibt: Wasserversorgung in schrumpfenden Städten. In: Frank S, Gandy M (eds) (2006) Hydropolis. Wasser und die Stadt der Moderne, S. 210–228. Campus Verlag, Frankfurt/Main

  • Berry J, Boman E, Riesen LA (2012) User’s Manual TEVA-SPOT Toolkit 2.5.2. United States Environmental Protection Agency, Cincinnati

  • Bosch A (1998) Human enteric viruses in the water environment: a minireview. Int Microbiol 1(3):191–196

    Google Scholar 

  • Bosch A, Guix S, Sano D, Pintó RM (2008) New tools for the study and direct surveillance of viral pathogens in water. Curr Opin Biotechnol 19(3):295–301. doi:10.1016/j.copbio.2008.04.006

    Article  Google Scholar 

  • Botzenhart K, Seidel M (2010) Wasservirologie. In: Niessner R (ed) Höll – Wasser. deGruyter, Berlin, pp 412–426

    Google Scholar 

  • Bridle H, Miller B, Desmulliez MPY (2014) Application of microfluidics in waterborne pathogen monitoring: a review. Water Res 55:256–271. doi:10.1016/j.watres.2014.01.061

    Article  Google Scholar 

  • Bruma M, Tofan C (2008) Detection, identification and quantification of indicator bacteria from drinking water. J Agroaliment Process Technol 14:196–202

    Google Scholar 

  • Bundesministerium der Justiz (2013) Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung - TrinkwV 2001) in der Fassung der Bekanntmachung vom 2. August 2013

  • Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D (2013) Extreme water-related weather events and waterborne disease. Epidemiol Infect 141(4):671–686. doi:10.1017/S0950268812001653

    Article  Google Scholar 

  • Conelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bionanal Chem 402(1):117–127. doi:10.1007/s00216-011-5407-3

    Article  Google Scholar 

  • Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12(14):2469–2486. doi:10.1039/c2lc40100b

    Article  Google Scholar 

  • Deutsches Institut für Urbanistik (=DIfU; 2015) (Ed.) Smart and multifunctional infrastructural systems for sustainable water supply, sanitation and stormwater management. Interim results from the INIS projects. Berlin

  • Elizaquível P, Sánchez G, Aznar R (2012) Application of propidium monoazide quantitative PCR for selective detection of live Escherichia coli O157:H7 in vegetables after inactivation by essential oils. Int J Food Microbiol 159(2):115–121. doi:10.1016/j.ijfoodmicro.2012.08.006

    Article  Google Scholar 

  • Enriquez CE, Gerba CP (1995) Concentration of enteric adenovirus-40 from tap, sea, and waste water. Wat Res 29(11):2554–2560. doi:10.1016/0043-1354(95)00099-7

    Article  Google Scholar 

  • European Centre for Disease Prevention and Control (=ECDC; ed) (2010) Climate change and communicable diseases in the EU Member States. Handbook for national vulnerability, impact and adaptation assessments. Stockholm

  • European Centre for Disease Prevention and Control (=ECDC; ed) (2012) Assessing the potential impacts of climate change on food- and waterborne diseases in Europe. Technical Report. Stockholm

  • Figueras MJ, Borrego JJ (2010) New perspectives in monitoring drinking water microbial quality. Int J Environ Res Public Health 7(12):4179–4202. doi:10.3390/ijerph7124179

    Article  Google Scholar 

  • Foladori P, Bruni L, Tamburini S, Ziglio G (2010) Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res 44(13):3807–3818. doi:10.1016/j.watres.2010.04.027

    Article  Google Scholar 

  • Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol R 69(2):357–371. doi:10.1128/MMBR.69.2.357-371.2005

    Article  Google Scholar 

  • Fu Z, Rogelj S, Kieft TL (2005) Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol 99(1):47–57. doi:10.1016/j.ijfoodmicro.2004.07.013

    Article  Google Scholar 

  • Gibson KE, Schwab KJ, Spencer SK, Borchardt MA (2012) Measuring and mitigating inhibition during quantitative real time PCR analysis of viral nucleic acid extracts from large-volume environmental water samples. Water Res 46(13):4281–4291. doi:10.1016/j.watres.2012.04.030

    Article  Google Scholar 

  • Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies: a review. Nucleos Nucleot Nucl 27(3):224–243. doi:10.1080/15257770701845204

    Article  Google Scholar 

  • Girones R, Ferrús MA, Alonso JL, Rodriguez-Manzano J, Calgua B, Corrêa Ade A, Hundesa A, Carratala A, Bofill-Mas S (2010) Molecular detection of pathogens in water—the pros and cons of molecular techniques. Water Res 44(15):4325–4339. doi:10.1016/j.watres.2010.06.03

    Article  Google Scholar 

  • Gofti-Laroche L, Gratacap-Cavallier B, Genoulaz O, Joret JC, Hartemann P, Seigneurin JM, Zmirou D (2001) A new analytical tool to assess health risks associated with the virological quality of drinking water (EMIRA study). Water Sci Technol 43(12):39–48

    Google Scholar 

  • Grabow WOK, Taylor MB, de Villiers JC (2001) New methods for the detection of viruses: call for review of drinking water quality guidelines. Water Sci Technol 43(12):1–8

    Google Scholar 

  • Hakenberg S, Hügle M, Meyer P, Behrmann O, Dame G, Urban GA (2015) Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA. Biosens Bioelectron 67:49–52. doi:10.1016/j.bios.2014.06.003

    Article  Google Scholar 

  • Hamza IA, Jurzik L, Stang A, Sure K, Uberla K, Wilhelm M (2009) Detection of human viruses in rivers of a densely-populated area in Germany using a virus adsorption elution method optimized for PCR analyses. Water Res 43(10):2657–2668. doi:10.1016/j.watres.2009.03.020

    Article  Google Scholar 

  • Hamza IA, Jurzik L, Überla K, Wilhelm M (2011) Methods to detect infectious human enteric viruses in environmental water samples. Int J Hyg Environ Health 214(6):424–436. doi:10.1016/j.ijheh.2011.07.014

    Article  Google Scholar 

  • Hillenbrand T, Niederste-Hollenberg J, Menger-Krug E, Klug S, Holländer R, Lautenschläger S, Geyler S (2010) Demografischer Wandel als Herausforderung für die Sicherung und Entwicklung einer kosten- und ressourceneffizienten Abwasserinfrastruktur. UBA-Texte 36/2010, Dessau

  • Ho CK, Khalsa SS (2009) EPANET-BAM: water quality modeling with incomplete mixing in pipe junctions. Water Distrib Syst Anal 2008:1–11. doi:10.1061/41024(340)87

    Google Scholar 

  • Ho J, Seidel M, Niessner R, Eggers J, Tiehm A (2016) Long amplicon (LA)-qPCR for the discrimination of infectious and noninfectious phix174 bacteriophages after UV inactivation. Water Res 103:141–148. doi:10.1016/j.watres.2016.07.032

    Article  Google Scholar 

  • Ibekwe AM, Watt PM, Grieve CM, Sharma VK, Lyons SR (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl Environ Microbiol 68(10):4853–4862. doi:10.1128/AEM.68.10.4853-4862.2002

    Article  Google Scholar 

  • Ikner L, Gerba C, Bright K (2012) Concentration and recovery of viruses from water: a comprehensive review. Food Environ Virol 4(2):41–67. doi:10.1007/s12560-012-9080-2

    Article  Google Scholar 

  • Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendele M (2010) Alternative microbial methods: an overview and selection criteria. Food Microbiol 27(6):710–730. doi:10.1016/j.fm.2010.04.2008

    Article  Google Scholar 

  • Jofre J, Blanch AR (2010) Feasibility of methods based on nucleic acid amplification techniques to fulfil the requirements for microbiological analysis of water quality. J Appl Microbiol 109(6):1853–1867. doi:10.1111/j.1365-2672.2010.04830.x

    Article  Google Scholar 

  • Kahlisch L, Henne K, Groebe L, Draheim J, Höfle MG, Brettar I (2010) Molecular analysis of the bacterial drinking water community with respect to live/dead status. Water Sci Technol 61(1):9–14. doi:10.2166/wst.2010.773

    Article  Google Scholar 

  • Karthe D (2015) Bedeutung des Klimawandels (insbesondere hydrometeorologischer Extremereignisse) für die Trinkwasserhygiene in Deutschland und Mitteleuropa. Hydrol Wasserbewirtsch 59(5):264–270. doi:10.5675/HyWa_2015,5_7

    Google Scholar 

  • Karthe D, Rehkopp N, Reeh T, Faust H (2016) Regional disparities of microbiological drinking water quality: assessment of spatial pattern and potential sociodemographic determinants. Urban Water J. doi:10.1080/1573062X.2016.1240809

    Google Scholar 

  • Kennedy D, Cronin UP, Wilkinson MG (2011) Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting. Appl Environ Microbiol 77(13):4657–4668. doi:10.1128/AEM.00323-11

    Article  Google Scholar 

  • Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta 181:1715–1723. doi:10.1007/s00604-014-1198-5

    Article  Google Scholar 

  • Kistemann T, Schulte W, Rudat K, Hentschel W, Häußermann D (2012) Gebäudetechnik für Trinkwasser. Springer, Berlin

    Book  Google Scholar 

  • Kloth KR, Niessner R, Seidel M (2009) Development of an open stand-alone platform for regenerable automated microarrays. Biosens Bioelectron 24(7):2106–2112. doi:10.1016/j.bios.2008.11.005

    Article  Google Scholar 

  • Koziol M (2007) Demografische Entwicklungen in Deutschland und ihre Konsequenzen für die Wasserverteilungsnetze und Abwasserkanalisationen. Forum der Forschung 20:25–28. Eigenverlag der BTU Cottbus, Cottbus

  • Kunze A, Elsäßer D, Karthe D, Dame G, Sedehizade F, Nießner R, Seidel M (2014) Entwicklung eines Hygiene Online-Monitoring Systems. Automatisierter Schnellnachweis von Bakterien und Viren (033W010E) für Roh- und Trinkwasser. In: Dellert-Ritter M (Ed.) (2014): Food + chrom Forum, pp. 60f. Mainaschaff, Germany

  • Kunze A, Pei L, Elsaesser D, Niessner R, Seidel M (2015) High performance concentration method for viruses in drinking water. J Virol Methods 222:132–137. doi:10.1016/j.jviromet.2015.06.007

    Article  Google Scholar 

  • Kunze A, Dilcher M, Abd El Wahed A, Hufert F, Niessner R, Seidel M (2016) On-Chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal Chem 88(1):898–905. doi:10.1021/acs.analchem.5b03540

    Article  Google Scholar 

  • Leifels M, Jurzik L, Wilhelm M, Hamza IA (2015) Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV-exposure and chlorine. Int J Hyg Environ Health 218(8):686–693. doi:10.1016/j.ijheh.2015.02.003

    Article  Google Scholar 

  • Lengger S, Niessner R, Seidel M (2012) Pathogens in Water: enrich and verify. Nachr Chem 60:1208–1212

    Article  Google Scholar 

  • Lengger S, Otto J, Elsässer D, Schneider O, Tiehm A, Fleischer J, Niessner R, Seidel M (2014) Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3. Anal Bioanal Chem 406(14):3323–3334. doi:10.1007/s00216-014-7641-y

    Article  Google Scholar 

  • Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258. doi:10.3389/fmicb.2014.00258

    Google Scholar 

  • Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18(4):583–607

    Article  Google Scholar 

  • Lui C, Cady C, Batt CA (2009) Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors 9(5):3713–3744. doi:10.3390/s90503713

    Article  Google Scholar 

  • Mompremier R, Pelletier G, Fuentes Mariles OA, Ghebremichael K (2015) Impact of incomplete mixing in the prediction of chlorine residuals in municipal water distribution systems. J Water Supply Res Technol AQUA 64(8):904–914. doi:10.2166/aqua.2015.148

    Article  Google Scholar 

  • Morales-Morales HA, Vidal G, Olszewski J, Rock CM, Dasgupta D, Oshima KH, Smith GB (2003) Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Appl Environ Microbiol 69(7):4098–4102. doi:10.1128/AEM.69.7.4098-4102.2003

    Article  Google Scholar 

  • Moresco V, Damazo NA, Barardi CR (2015) Rotavirus vaccine stability in the aquatic environment. J Appl Microbiol. doi:10.1111/jam.13021

    Google Scholar 

  • Nichols G, Lane C, Asgari N, Verlander NQ, Charlett A (2009) Rainfall and outbreaks of drinking water related disease in England and Wales. J Water Health 7(1):1–8. doi:10.2166/wh.2009.143

    Article  Google Scholar 

  • Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320. doi:10.1016/j.mimet.2006.04.015

    Article  Google Scholar 

  • Nogva HK, Drømtorp SM, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. Biotechniques 34(4):804–813

    Google Scholar 

  • Ott S, Niessner R, Seidel M (2011) Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus. J Sep Sci 34(16–17):2181–2192. doi:10.1002/jssc.201100208

    Google Scholar 

  • Otto J, Tiehm A (2015): Rapid Virus qPCR and PMA-qPCR Detection after Treatment with Heat, UV and Cl2. In: 18th international symposium on health related water microbiology, IWA WaterMicro 2015, Lisbon, Portugal, 13–19 September 2015

  • Otto J, Jurzik L, Schneider M, Stange C, Hamza I, Preuß G, Tiehm A (2015) Entwicklung und Validierung von molekularbiologischen PCR-Methoden zum quantitativen Nachweis von hygienerelevanten Bakterien und Viren im Wasser. energie|wasser-praxis 10:58–62

  • Pei L, Rieger M, Lengger S, Ott S, Zawadsky C, Hartmann NM, Selinka HC, Tiehm A, Niessner R, Seidel M (2012) Combination of crossflow ultrafiltration, monolithic affinity filtration, and quantitative reverse transcriptase PCR for rapid concentration and quantification of bacteriophage MS2 in environmental water. Environ Sci Technol 46(18):10073–10080. doi:10.1021/es302304t

    Google Scholar 

  • Peskoller C, Niessner R, Seidel M (2009) Development of an epoxy-based monolith used for the affinity capturing of Eschericha coli bacteria. J Chromatogr A 1216(18):3794–3801. doi:10.1016/j.chroma.2009.02.041

    Article  Google Scholar 

  • Petry D (2009): Klimawandel und Trinkwasserversorgung: Auswirkungen, Handlungsbedarf, Anpassungsmöglichkeiten. DVGW energie|wasser-praxis 10:48–54

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204. doi:10.1371/journal.pbio.0040204

    Article  Google Scholar 

  • Pitkänen T, Paakkari P, Miettinen IT, Heinonen-Tanski H, Paulin L, Hänninen ML (2007) Comparison of media for enumeration of coliform bacteria and Escherichia coli in non-disinfected water. J Microbiol Methods 68:522–529. doi:10.1016/j.mimet.2006.10.007

    Article  Google Scholar 

  • Podszun S, Vulto P, Heinz H, Hakenberg S, Hermann C, Hankemeier T, Urban GA (2012) Enrichment of viable bacteria in a micro-volume by free-flow electrophoresis. Lab Chip 12(3):451–457

    Article  Google Scholar 

  • Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathog 4(2):307–334. doi:10.3390/pathogens4020307

    Article  Google Scholar 

  • Rauschenbach T, Bernard T, Gnauck A, Jacobi M, Karimanzira D, Krol O, Pfützenreuter T, Scharaw B, Westerhoff T (2016) Modeling, control and optimization of water systems: system engineering methods for control and decision making tasks. Springer, Berlin

    Book  Google Scholar 

  • Rodó X, Pascual M, Doblas-Reyes FJ, Gershunov A, Stone DA, Giorgi F, Hudson PJ, Kinter J, Rodríguez-Arias MA, Stenseth NC, Alonso D, García-Serrano J, Dobson AP (2013) Climate change and infectious diseases: can we meet the needs for better prediction? Clim Change 118(3–4):625–640. doi:10.1007/s10584-013-0744-1

    Article  Google Scholar 

  • Rompré A, Servais P, Baudart J, de-Roubin M-R, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49(1):31–54. doi:10.1016/S0167-7012(01)00351-7

    Article  Google Scholar 

  • Rossman LA (2000) EPANET 2 users manual. United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Samendra PS, Masaaki K, Charles PG, Ian LP (2014) Rapid detection technologies for monitoring microorganisms in water. Biosensors J. doi:10.4172/2090-4967.1000109

    Google Scholar 

  • Schönthaler K, von Andrian-Werburg S, Nickel D (2011): Entwicklung eines Indikatorensystems für die Deutsche Anpassungsstrategie an den Klimawandel (DAS). Dessau-Roßlau, Germany: UBA Serie Climate Change 22/11

  • Seidel M, Niessner R (2008) Analytical microarrays: a critical review. Anal Bioanal Chem 391(5):1521–1544. doi:10.1007/s00216-008-2039-3

    Article  Google Scholar 

  • Seidel M, Niessner R (2014) Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 406(23):5589–5612. doi:10.1007/s00216-014-7968-4

    Article  Google Scholar 

  • Seidel M, Kunze A, Elsässer D, Otto J, Tiehm A, Heese C, Blättel V, Vosseler S, Dame G, Dilcher M, Hakenberg S, Hügle M, Hufert F, Scharaw B, Westerhoff T, Dietze S, Sedehizade F, Karthe D, Niessner R (2015) Entwicklung eines automatisierten Verfahrens zum Schnellnachweis von hygienerelevanten Bakterien und Viren in Trink- und Rohwasser. In: Wasserchemische Gesellschaft – Fachgruppe in der Gesellschaft deutscher Chemiker e.V. (eds) Wasser 2015: Proceedings zur Jahrestagung der Wasserchemischen Gesellschaft. Wasserchemische Gesellschaft, Mülheim an der Ruhr, pp 125–129

  • Selinka HC, Botzenhart K, Feuerpfeil I, Puchert W, Schmoll O, Szewzyk R, Willmitzer H (2011) Nachweis von Viren im Rohwasser als Grundlage einer Risikoabschätzung. Bundesgesundheitsblatt - Gesundheitsforschung – Gesundheitsschutz 54(4):496–504

    Article  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127. doi:10.1146/annurev.micro.54.1.81

    Article  Google Scholar 

  • Tatsugari T, Yoshiki T (2000) Screening for microorganisms with specific characteristics by flow cytometry and single-cell sorting. J Biosci Bioeng 89(3):217–222. doi:10.1016/S1389-1723(00)88822-2

    Article  Google Scholar 

  • Vulto P, Dame G, Maier U, Makohliso S, Podszun S, Zahn P, Urban G (2010) A microfluidic approach for high efficiency extraction of low molecular weight RNA. Lab Chip 10(5):610–616. doi:10.1039/b913481f

    Article  Google Scholar 

  • Watkins J, Cameron SA (1991) Recently recognized concerns in drinking water microbiology. Water Environ J 5(6):624–630

    Article  Google Scholar 

  • Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80(15):5854–5863. doi:10.1021/ac800318b

    Article  Google Scholar 

  • Wu J, Long SC, Das D, Dorner SM (2011) Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 9(2):265–278. doi:10.2166/wh.2011.117

    Article  Google Scholar 

  • Wunderlich A, Torggler C, Elsaesser D, Lück C, Niessner R, Seidel M (2016) Rapid quantification method for Legionella pneumophila in surface water. Anal Bioanal Chem 408(9):2203–2213. doi:10.1007/s00216-016-9362-x

    Article  Google Scholar 

  • Young G, Turner S, Davies JK, Sundqvist G, Figdor D (2007) Bacterial DNA persists for extended periods after cell death. J Endod 33(12):1417–1420. doi:10.1016/j.joen.2007.09.002

    Article  Google Scholar 

  • Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification—a review. Anal Chim Acta 638(2):115–125. doi:10.1016/j.aca.2009.02.038

    Article  Google Scholar 

Download references

Acknowledgements

The results presented in this paper are based on the research and development project “Development and Implementation of a Concentration and Detection System for the Inline Monitoring of Waterborne Pathogens in Raw and Drinking Water (EDIT)” which is funded by the German Federal Ministry of Education and Research (BMBF; Grant No. 033W010A-C, E-J) in the framework of the funding program “Smart and Multifunctional Infrastructural Systems for Sustainable Water Supply, Sanitation and Stormwater Management (INIS)” and the FONA (Research for Sustainable Development) initiative. We acknowledge the support provided by the Project Administration Jülich (PTJ) and the INIS networking project. The authors are grateful for the very constructive feedback of the reviewers that has helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Karthe, Gregory Dame or Michael Seidel.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany,” guest-edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhaüser and Markus Weiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthe, D., Behrmann, O., Blättel, V. et al. Modular development of an inline monitoring system for waterborne pathogens in raw and drinking water. Environ Earth Sci 75, 1481 (2016). https://doi.org/10.1007/s12665-016-6287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6287-9

Keywords

Navigation