Skip to main content

Advertisement

Log in

Concentration and Recovery of Viruses from Water: A Comprehensive Review

  • Review Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Enteric viruses are a cause of waterborne disease worldwide, and low numbers in drinking water can present a significant risk of infection. Because the numbers are often quite low, large volumes (100–1,000 L) of water are usually processed. The VIRADEL method using microporous filters is most commonly used today for this purpose. Negatively charged filters require the addition of multivalent salts and acidification of the water sample to effect virus adsorption, which can make large-volume sampling difficult. Positively charged filters require no preconditioning of samples, and are able to concentrate viruses from water over a greater pH range than electronegative filters. The most widely used electropositive filter is the Virosorb 1MDS; however, the Environmental Protection Agency has added the positively charged NanoCeram filters to their proposed Method 1615. Ultrafilters concentrate viruses based on size exclusion rather than electrokinetics, but are impractical for field sampling or processing of turbid water. Elution (recovery) of viruses from filters following concentration is performed with organic (e.g., beef extract) or inorganic solutions (e.g., sodium polyphosphates). Eluates are then reconcentrated to decrease the sample volume to enhance detection methods (e.g., cell culture infectivity assays and molecular detection techniques). While the majority of available filters have demonstrated high virus retention efficiencies, the methods to elute and reconcentrate viruses have met with varying degrees of success due to the biological variability of viruses present in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaszadegan, M., Huber, M. S., Gerba, C. P., & Pepper, I. L. (1993). Detection of enteroviruses in groundwater with the polymerase chain reaction. Applied and Environmental Microbiology, 59, 1318–1324.

    PubMed  CAS  Google Scholar 

  • Albinana-Gimenez, N., Clemente-Casares, P., Calgua, B., Huguet, J. M., Courtois, S., & Girones, R. (2009a). Comparison of methods for concentrating human adenoviruses, polyoma virus JC, and noroviruses in source waters and drinking waters using quantitative PCR. Journal of Virological Methods, 158, 104–109.

    Article  PubMed  CAS  Google Scholar 

  • Albinana-Gimenez, N., Miagostovich, M. P., Calgua, B., Huguet, J. M., Matia, L., & Girones, R. (2009b). Analysis of adenoviruses and polyomaviruses quantified by qPCR as indicators of water quality in source and drinking-water plants. Water Research, 43, 2011–2019.

    Article  PubMed  CAS  Google Scholar 

  • American Public Health Association. (2005). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Ammersbach, M., & Bienzle, D. (2011). Methods for assessing feline immunodeficiency virus infection, infectivity and purification. Veterinary Immunology and Immunopathology, 143, 202–214.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, N. G., Cline, G. B., Harris, N. W., & Green, J. G. (1967). Isolation of viral particles from large fluid volumes. In G. Berg (Ed.), Transmission of viruses by the water route (pp. 75–88). London: Interscience.

    Google Scholar 

  • Belfort, G., Rotem, Y., & Katzenelson, E. (1975). Virus concentration using hollow fiber membranes—I. Water Research, 9, 75–85.

    Article  Google Scholar 

  • Belfort, G., Rotem, Y., & Katzenelson, E. (1976). Virus concentration using hollow fiber membranes—II. Water Research, 10, 279–284.

    Article  Google Scholar 

  • Bennett, H. B., O’Dell, H. D., Norton, G., Shin, G., Hsu, F.-C., & Meschke, J. S. (2010). Evaluation of a novel electropositive filter for the concentration of viruses from diverse water matrices. Water Science and Technology, 61, 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Berg, G., Dahling, D. R., & Berman, D. (1971). Recovery of small quantities of viruses from clean waters in cellulose nitrate membrane filters. Applied Microbiology, 22, 608–614.

    PubMed  CAS  Google Scholar 

  • Berman, D., Rohr, M. E., & Safferman, R. S. (1980). Concentration of poliovirus in water by molecular filtration. Applied and Environmental Microbiology, 40, 426–428.

    PubMed  CAS  Google Scholar 

  • Cliver, D. O. (1965). Factors in the membrane filtration of enteroviruses. Applied Microbiology, 13, 417–425.

    PubMed  CAS  Google Scholar 

  • Cliver, D. O., & Yeatman, J. (1965). Ultracentrifugation in the concentration and detection of enteroviruses. Applied Microbiology, 13, 387–392.

    PubMed  CAS  Google Scholar 

  • Coin, L. (1967). The viruses in water. In G. Berg (Ed.), Transmission of Viruses by the Water Route (p. 367). London: Interscience.

    Google Scholar 

  • Dahling, D. (2002). An improved filter elution and cell culture assay procedure for evaluating public groundwater systems for culturable enteroviruses. Water Environment Research, 74, 564–568.

    Article  PubMed  CAS  Google Scholar 

  • Dahling, D. R., & Wright, B. A. (1986). Recovery of viruses from water by a modified flocculation procedure for second-step concentration. Applied and Environmental Microbiology, 51, 1326–1331.

    PubMed  CAS  Google Scholar 

  • Diniz-Mendes, L., de Paula, V. S., Luz, S. L. B., & Niel, C. (2008). High prevalence of human torque teno viruses in streams crossing the city of Manaus, Brazilian Amazon. Journal of Applied Microbiology, 105, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Divizia, M., Santi, A. L., & Pana, A. (1989). Ultrafiltration: An efficient second step for hepatitis A virus and poliovirus concentration. Journal of Virological Methods, 23, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers, M. M., Grabow, W. O. K., & Pavlov, D. N. (2005). Detection of enteroviruses in untreated and treated drinking water supplies in South Africa. Water Research, 39, 2253–2258.

    Article  PubMed  CAS  Google Scholar 

  • Farrah, S. R., & Bitton, G. (1978). Elution of poliovirus adsorbed to membrane filters. Applied and Environmental Microbiology, 36, 982–984.

    PubMed  CAS  Google Scholar 

  • Farrah, S. R., & Bitton, G. (1979). Low molecular weight substitutes for beef extract as eluents for poliovirus adsorbed to membrane filters. Canadian Journal of Microbiology, 25, 1045–1051.

    Article  PubMed  CAS  Google Scholar 

  • Farrah, S. R., Gerba, C. P., Goyal, S. M., Wallis, C., & Melnick, J. L. (1977). Regeneration of pleated filters used to concentrate enteroviruses from large volumes of tap water. Applied and Environmental Microbiology, 33, 308–311.

    PubMed  CAS  Google Scholar 

  • Farrah, S. R., Gerba, C. P., Wallis, C., & Melnick, J. L. (1976a). Concentration of viruses from large volumes of tap water using pleated membrane filters. Applied and Environmental Microbiology, 31, 221–226.

    PubMed  CAS  Google Scholar 

  • Farrah, S. R., Goyal, S. M., Gerba, C. P., Wallis, C., & Shaffer, P. T. B. (1976b). Characteristics of humic acid and organic compounds concentrated from tap water using the Aquella virus concentrator. Water Research, 10, 897–901.

    Article  CAS  Google Scholar 

  • Farrah, S. R., & Preston, D. R. (1985). Concentration of viruses from water by using cellulose filters modified by in situ precipitation of ferric and aluminum hydroxides. Applied and Environmental Microbiology, 50, 1502–1504.

    PubMed  CAS  Google Scholar 

  • Farrah, S. R., Shah, D. O., & Ingram, L. O. (1981). Effects of chaotropic and antichaotropic agents on elution of poliovirus adsorbed on membrane filters. Proceedings of the National Academy of Sciences of the United States of America, 75, 1229–1232.

    Article  Google Scholar 

  • Fout, G. S., Martinson, B. C., Moyer, M. W. N., & Dahling, D. R. (2003). A multiplex reverse transcription-PCR method for detection of human enteric viruses in groundwater. Applied and Environmental Microbiology, 69, 3158–3164.

    Article  PubMed  CAS  Google Scholar 

  • Fout, G. S., Schaefer III, F. W., Messer, J. W., Dahling, D. R., & Stetler, R. E. (1996). Information collection rule (ICR) microbial laboratory manual. EPA/600/R-95/178. Washington, DC: U.S. Environmental Protection Agency.

  • Fumian, T. M., Leite, J. P. G., Castello, A. A., Gaggero, A., de Caillou, M. S. L., & Miagostovich, M. P. (2010). Detection of rotavirus A in sewage samples using multiplex qPCR and an evaluation of the ultracentrifugation and adsorption-elution methods for virus concentration. Journal of Virological Methods, 170, 42–46.

    Article  PubMed  CAS  Google Scholar 

  • Futch, J. C., Griffin, D. W., & Lipp, E. K. (2010). Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys. Environmental Microbiology, 12, 964–974.

    Article  PubMed  CAS  Google Scholar 

  • Gajardo, R., Díez, J. M., Jofre, J., & Bosch, A. (1991). Adsorption-elution with negatively and positively-charged glass powder for the concentration of hepatitis A virus from water. Journal of Virological Methods, 31, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Gantzer, C., Senouci, S., Maul, A., Levi, Y., & Schwartzbrod, L. (1997). Enterovirus genomes in wastewater: Concentration on glass wool and glass powder and detection by RT-PCR. Journal of Virological Methods, 65, 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Garin, D., Fuchs, F., Crance, J. M., Deloince, R., Aymard, M., & Bartoli, M. (1993). Validation of an ultrafiltration process to concentrate viruses from large volumes of water. Environmental Technology, 14, 397–400.

    Article  Google Scholar 

  • Gartner, H. (1967). Retention and recovery of polioviruses on a soluble ultrafilter. In G. Berg (Ed.), Transmission of viruses by the water route (pp. 121–127). London: Interscience.

    Google Scholar 

  • Gassilloud, B., Duval, M., Schwartzbrod, L., & Gantzer, C. (2003). Recovery of feline calicivirus infectious particles and genome from water: Comparison of two concentration techniques. Water Science and Technology, 47, 97–101.

    PubMed  CAS  Google Scholar 

  • Gerba, C. (1984). Applied and theoretical aspects of virus adsorption to surfaces. Advances in Applied Microbiology, 30, 33–68.

    Article  Google Scholar 

  • Gerba, C. P., Farrah, S. R., Goyal, S. M., Wallis, C., & Melnick, J. L. (1978). Concentration of enteroviruses from large volumes of tap water, treated sewage, and seawater. Applied and Environmental Microbiology, 35, 540–548.

    PubMed  CAS  Google Scholar 

  • Gibbons, C. D., Rodriguez, R. A., Tallon, L., & Sobsey, M. D. (2010). Evaluation of positively charged alumina nanofibre cartridge filters for the primary concentration of noroviruses, adenoviruses, and male-specific coliphages from seawater. Journal of Applied Microbiology, 109, 635–641.

    PubMed  CAS  Google Scholar 

  • Gilgen, M., Germann, D., Luthy, J., & Hubner, P. (1997). Three-step isolation method for sensitive detection of enterovirus, rotavirus, hepatitis A virus, and small round structured viruses in water samples. International Journal of Food Microbiology, 37, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Goyal, S. M., Zerda, K. S., & Gerba, C. P. (1980). Concentrations of coliphage from large volumes of water and wastewater. Applied and Environmental Microbiology, 39, 85–91.

    PubMed  CAS  Google Scholar 

  • Grabow, W. O. K. (1968). The virology of waste water treatment. Water Research, 2, 675–701.

    Article  Google Scholar 

  • Gravelle, C. R., & Chin, T. D. Y. (1961). Enterovirus isolations from sewage: A comparison of three methods. Journal of Infectious Disease, 10, 205.

    Article  Google Scholar 

  • Grinrod, J., & Cliver, D. O. (1970). A polymer two phase system adapted for virus detection. Archive für Gesamte Virusforsch, 31, 365–372.

    Article  Google Scholar 

  • Grinstein, S., Melnick, J. L., & Wallis, C. (1970). Virus isolations from sewage and from a stream receiving effluents of sewage treatment plants. Bulletin of the world Health Organization, 42, 291–296.

    PubMed  CAS  Google Scholar 

  • Guttman-Bass, N., & Nasser, A. (1984). Simultaneous concentration of four enteroviruses from tap, waste, and natural waters. Applied and Environmental Microbiology, 47, 1311–1315.

    PubMed  CAS  Google Scholar 

  • Haramoto, E., Katayama, H., Oguma, K., & Ohgaki, S. (2005). Application of cation-coated filter method to detection of noroviruses, enteroviruses, adenoviruses, and torque teno viruses in the Tamagawa River in Japan. Applied and Environmental Microbiology, 71, 2403–2411.

    Article  PubMed  CAS  Google Scholar 

  • Haramoto, E., Katayama, H., & Ohgaki, S. (2004). Detection of noroviruses in tap water in Japan by means of a new method for concentrating enteric viruses in large volumes of freshwater. Applied and Environmental Microbiology, 70, 2154–2160.

    Article  PubMed  CAS  Google Scholar 

  • Haramoto, E., Katayama, H., Utagawa, E., & Ohgaki, S. (2009). Recovery of human norovirus from water by virus concentration methods. Journal of Virological Methods, 160, 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Hill, W. F., Akin, E. W., & Benton, W. H. (1971). Detection of viruses in water: A review of methods and applications. Water Research, 5, 967–995.

    Article  Google Scholar 

  • Hill, W. F., Akin, E. W., Benton, W. R., Mayhew, C. J., & Jakubowski, W. (1974). Apparatus for conditioning unlimited quantities of finished waters for enteric virus detection. Applied Microbiology, 27, 1177–1178.

    PubMed  Google Scholar 

  • Hill, W. F., Akin, E. W., Benton, W. H., & Metcalf, T. G. (1972). Virus in water: II. Evaluation of membrane cartridge filters for recovering low multiplicities of poliovirus from water. Applied Microbiology, 23, 880–888.

    PubMed  Google Scholar 

  • Hill, W. F., Jakubowski, W., Akin, E. W., & Clarke, N. A. (1976). Detection of virus in water: Sensitivity of the tentative standard method for drinking water. Applied and Environmental Microbiology, 31, 254–261.

    PubMed  Google Scholar 

  • Hill, V. R., Kahler, A. M., Jothikumar, N., Johnson, T. B., Hahn, D., & Cromeans, T. L. (2007). Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Applied and Environmental Microbiology, 73, 4218–4225.

    Article  PubMed  CAS  Google Scholar 

  • Hill, V. R., Polaczyk, A. L., Hahn, D., Narayanan, J., Cromeans, T. L., Roberts, J. M., et al. (2005). Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Applied and Environmental Microbiology, 71, 6878–6884.

    Article  PubMed  CAS  Google Scholar 

  • Hill, V. R., Polaczyk, A. L., Kahler, A. M., Cromeans, T. L., Hahn, D., & Amburgey, J. E. (2009). Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL Technique and USEPA Method 1623. Journal of Environmental Quality, 38, 822–825.

    Article  PubMed  CAS  Google Scholar 

  • Holowecky, P. M., James, R. R., Lorch, D. P., Straka, S. E., & Lindquist, H. D. A. (2009). Evaluation of ultrafilter cartridges for a water sampling apparatus. Journal of Applied Microbiology, 106, 738–747.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, B. M., Chen, C. H., Kung, C. M., Wan, M. T., & Shen, S. M. (2007). Evaluation of enterovirus recovery in surface water by different adsorption and elution procedures. Chemosphere, 66, 964–969.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, C. J., Dahling, D. R., Safferman, R. S., & Goyke, T. (1984). Comparison of commercial beef extracts and similar materials for recovering viruses from environmental samples. Canadian Journal of Microbiology, 30, 1253–1263.

    Article  PubMed  CAS  Google Scholar 

  • Ikner, L. A., Soto-Beltran, M., & Bright, K. R. (2011). New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water. Applied and Environmental Microbiology, 77, 3500–3506.

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski, W., Hill, W., & Clarke, N. (1975). Comparative study of four microporous filters for concentrating viruses from drinking water. Applied Microbiology, 30, 58–65.

    PubMed  CAS  Google Scholar 

  • Jakubowski, W., Hoff, J. C., Anthony, N. C., & Hill, W. F. (1974). Epoxy-fiberglass adsorbent for concentrating viruses from large volumes of potable water. Applied Microbiology, 28, 501–502.

    PubMed  CAS  Google Scholar 

  • Jansons, J., & Bucens, M. R. (1986). Virus detection in water by ultrafiltration. Water Research, 12, 1603–1606.

    Article  Google Scholar 

  • Johnson, J. H., Fields, J. E., & Darlington, W. A. (1967). Removing viruses from water by polyelectrolytes. Nature, 213, 665–667.

    Article  PubMed  CAS  Google Scholar 

  • Jothikumar, N., Khana, P., Paulmurugan, R., Kamatchiammal, S., & Padmanabhan, P. (1995). A simple device of the concentration and detection of enterovirus, hepatitis E virus and rotavirus from water samples by reverse transcription-polymerase chain reaction. Journal of Virological Methods, 55, 401–415.

    Article  PubMed  CAS  Google Scholar 

  • Karim, M. R., Rhodes, E. R., Brinkman, N., Wymer, L., & Fout, G. S. (2009). New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Applied and Environmental Microbiology, 75, 2393–2399.

    Article  PubMed  CAS  Google Scholar 

  • Katayama, H., Shimasaki, A., & Ohgaki, S. (2002). Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Applied and Environmental Microbiology, 68, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Katzenelson, E., Fattal, B., & Hostovesky, T. (1976). Organic flocculation: An efficient second-step concentration method for the detection of viruses in tap water. Applied and Environmental Microbiology, 32, 638–639.

    PubMed  CAS  Google Scholar 

  • Kelly, S. (1953). Detection and occurrence of Coxsackieviruses in sewage. American Journal of Public Health, 43, 1532.

    Article  PubMed  CAS  Google Scholar 

  • Kessick, M. A., & Wagner, R. A. (1978). Electrophoretic mobilities of virus adsorbing filter materials. Water Research, 12, 263–268.

    Article  Google Scholar 

  • Kitajima, M., Haramoto, E., Phanuwan, C., Katayama, H., & Ohgaki, S. (2009). Detection of genogroup IV norovirus in wastewater and river water in Japan. Letters in Applied Microbiology, 49, 655–658.

    Article  PubMed  CAS  Google Scholar 

  • Kopecka, H., Dubrou, S., Prevot, J., Marechal, J., & Lopez-Pila, J. M. (1993). Detection of naturally occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and hybridization. Applied and Environmental Microbiology, 59, 1213–1219.

    PubMed  CAS  Google Scholar 

  • Lambertini, E., Spencer, S. K., Bertz, P. D., Loge, F. J., Kieke, B. A., & Borchardt, M. D. (2008). Concentration of enteroviruses, adenoviruses, and noroviruses from drinking water by use of glass wool filters. Applied and Environmental Microbiology, 74, 2990–2996.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Kim, M., Lee, J. E., Lim, M., Kim, M., Kim, J. M., et al. (2011a). Investigation of norovirus occurrence in groundwater in metropolitan Seoul, Korea. Science of the Total Environment, 409, 2078–2084.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Kim, M., Paik, S. Y., Lee, C. H., Jheong, W. H., Kim, J., et al. (2011b). Evaluation of electropositive filtration for recovering norovirus in water. Journal of Water and Health, 9, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Liu, O. C., Brashear, D. A., Seraichekas, H. R., Barnick, J. A., & Metcalf, T. G. (1971). Virus in water. I. A preliminary study on a flow-through gauze sampler for recovering virus from waters. Applied Microbiology, 21, 405–410.

    PubMed  CAS  Google Scholar 

  • Logan, K. B., Rees, G. E., Seeley, N. D., & Primrose, S. B. (1980). Rapid concentrations of bacteriophages from large volumes of freshwater: Evaluation of positively charged, microporous filters. Journal of Virological Methods, 1, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Logan, K. B., Scott, G. E., Seeley, N. D., & Primrose, S. B. (1981). A portable device for the rapid concentration of viruses from large volumes of natural freshwater. Journal of Virological Methods, 3, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Lukasik, J., Scott, T. M., Andryshak, D., & Farrah, S. R. (2000). Influence of salts on virus adsorption to microporous filters. Applied and Environmental Microbiology, 66, 2914–2920.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.-F., Naranjo, J., & Gerba, C. P. (1994). Evaluation of MK filters for recovery of enteroviruses from tap water. Applied and Environmental Microbiology, 60, 1974–1977.

    PubMed  CAS  Google Scholar 

  • McMurry, J. E. (2004). Biomolecules: Amino acids, peptides, and proteins. In Organic chemistry (6th ed., p. 988). Belmont, CA: Brooks/Cole-Thomson Learning.

  • Melnick, J. L., Emmons, J., Coffey, J. H., & Schoof, H. (1954). Coxsackie viruses from sewage. American Journal of Hygiene, 59, 185–195.

    PubMed  CAS  Google Scholar 

  • Melnick, J. L., Safferman, R., Rao, V. C., Goyal, S., Berg, G., Dahling, D. R., et al. (1984). Round robin investigation of methods for the recovery of poliovirus from drinking water. Applied and Environmental Microbiology, 47, 144–150.

    PubMed  CAS  Google Scholar 

  • Menut, C., Beril, C., & Schwartzbrod, L. (1993). Poliovirus recovery from tap water after concentration over glass powder and glass wool. Water Science and Technology, 27, 291–294.

    Google Scholar 

  • Metcalf, T. G. (1961). Use of membrane filters to facilitate the recovery of virus from aqueous suspensions. Applied Microbiology, 9, 376–379.

    PubMed  CAS  Google Scholar 

  • Metcalf, T. G., Wallis, C., & Melnick, J. L. (1974). Environmental factors influencing isolation of enteroviruses from polluted surface waters. Applied Microbiology, 27, 920–926.

    PubMed  CAS  Google Scholar 

  • Morris, R., & Waite, W. M. (1980). Evaluation of procedures for recovery of viruses from water, part 1, concentration systems. Water Research, 14, 791–793.

    Article  Google Scholar 

  • Myrmel, M., Rimstad, E., Wasteson, Y., & Skjerve, E. (1999). Detection of small round structured viruses in artificially contaminated water using filter adsorption and reverse transcription polymerase chain reaction. International Journal of Food Microbiology, 49, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Nordgren, J., Matussek, A., Mattsson, A., Svensson, L., & Lindgren, P.-E. (2009). Prevalence of norovirus and factors influencing virus concentrations during one year in a full-scale wastewater treatment plant. Water Research, 43, 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  • Nupen, E. M. (1970). Virus studies on the Windhoek waste-water reclamation plant (South Africa). Water Research, 4, 661–672.

    Article  CAS  Google Scholar 

  • Olszewski, J., Winona, L., & Oshima, K. H. (2005). Comparison of 2 ultrafiltration systems for the concentration of seeded viruses from environmental waters. Canadian Journal of Microbiology, 51, 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Payment, P., Fortin, S., & Trudel, M. (1984). Ferric chloride flocculation for nonflocculating beef extract preparations. Applied and Environmental Microbiology, 47, 591–592.

    PubMed  CAS  Google Scholar 

  • Payment, P., Gerba, C. P., Wallis, C., & Melnick, J. L. (1976). Methods for concentrating viruses from large volumes of estuarine water on pleated membranes. Water Research, 10, 893–896.

    Article  Google Scholar 

  • Payment, P., & Trudel, M. (1979). Efficiency of several micro-fiber glass filters for recovery of poliovirus from tap water. Applied and Environmental Microbiology, 38, 365–368.

    PubMed  CAS  Google Scholar 

  • Payment, P., & Trudel, M. (1987). Second-step reconcentration of environmental samples by ammonium sulfate flocculation of beef extract. Canadian Journal of Microbiology, 22, 571–572.

    Article  Google Scholar 

  • Payment, P., & Trudel, M. (1988). Wound fiberglass depth filters as a less expensive approach for the concentration of viruses from water. Canadian Journal of Microbiology, 34, 272.

    Article  Google Scholar 

  • Polaczyk, A. L., Narayanan, J., Cromeans, T. L., Hahn, D., Roberts, J. M., Amburgey, J. E., et al. (2008). Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. Journal of Microbiological Methods, 73, 92–99.

    Article  PubMed  CAS  Google Scholar 

  • Prata, C., Ribeiro, A., Cunha, A., Gomes, N. C. M., & Almeida, A. (2012). Ultracentrifugation as a direct method to concentrate viruses in environmental waters: Virus-like particle enumeration as a new approach to determine the efficiency of recovery. Journal of Environmental Monitoring, 14, 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Preston, D. R., Vasudevan, T. V., Bitton, G., Farrah, S. R., & Morel, J. L. (1988). Novel approach for modifying microporous filters for virus concentration from water. Applied and Environmental Microbiology, 54, 1325–1329.

    PubMed  CAS  Google Scholar 

  • Rajal, V. R., McSwain, B. S., Thompson, D. E., Leutenegger, C. M., Kildare, B. J., & Wuertz, S. (2007). Validation of hollow fiber ultrafiltration and real-time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Research, 41, 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  • Rao, V. V., Chandorkar, U., Rao, N. U., Kumaran, P., & Lakhe, S. B. (1972). A simple method for concentrating and detecting viruses in wastewater. Water Research, 6, 1565–1576.

    Article  Google Scholar 

  • Rao, N. U., & Labzoffsky, N. A. (1969). A simple method for the detection of low concentration of viruses in large volumes of water by the membrane filtration technique. Canadian Journal of Microbiology, 15, 399–403.

    Article  PubMed  CAS  Google Scholar 

  • Rolland, D., & Block, J. C. (1980). Simultaneous concentration of Salmonella and enterovirus from surface water by using micro-fiber glass filters. Applied and Environmental Microbiology, 39, 659–661.

    PubMed  CAS  Google Scholar 

  • Rose, J. B., Singh, S. N., Gerba, C. P., & Kelley, L. M. (1984). Comparison of microporous filters for concentration of viruses from wastewater. Applied and Environmental Microbiology, 47, 989–992.

    PubMed  CAS  Google Scholar 

  • Sarrette, B. A., Danglot, C. D., & Vilagines, R. (1977). A new and simple method for the recuperation of viruses from water. Water Research, 11, 355–358.

    Article  Google Scholar 

  • Schultz, A. C., Perelle, S., Di Pasquale, S., Kovac, K., De Medici, D., Fach, P., et al. (2011). Collaborative validation of a rapid method for efficient virus concentration in bottled water. International Journal of Food Microbiology, 145, S158–S166.

    Article  PubMed  Google Scholar 

  • Schwab, K. J., De Leon, R., & Sobsey, M. D. (1993). Development of PCR methods for enteric virus detection in water. Water Science and Technology, 27, 211–218.

    Google Scholar 

  • Scott, T. M., Lukasik, J., & Farrah, S. R. (2002). Improved method for recovery of bacteriophages from large volumes of water using negatively charged microporous filters. Canadian Journal of Microbiology, 48, 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Shields, P. A., Berenfeld, S. A., & Farrah, S. R. (1985). Modified membrane-filter procedure for concentration of enteroviruses from tap water. Applied and Environmental Microbiology, 49, 453–455.

    PubMed  CAS  Google Scholar 

  • Shields, P. A., & Farrah, S. R. (1986). Concentration of viruses in beef extract by flocculation with ammonium sulfate. Applied and Environmental Microbiology, 51, 211–213.

    PubMed  CAS  Google Scholar 

  • Shuval, H. J., Cymbalista, S., Fatal, B., & Goldblum, N. (1967). Concentration of enteric viruses in water by hydro-extraction and two phase separation. In G. Berg (Ed.), Transmission of viruses by the water route (pp. 45–55). London: Interscience.

    Google Scholar 

  • Shuval, H. J., Fattal, B., Cymbalista, S., & Goldblum, N. (1969). The phase-separation method for the concentration and detection of viruses in water. Water Research, 3, 225–240.

    Article  Google Scholar 

  • Singh, S. N., & Gerba, C. P. (1983). Concentration of coliphage from water and sewage with charge-modified filter aid. Applied and Environmental Microbiology, 45, 232–237.

    PubMed  CAS  Google Scholar 

  • Smith, C. M., & Hill, V. R. (2009). Dead-end hollow-fiber ultrafiltration for diverse recovery of microbes from water. Applied and Environmental Microbiology, 75, 5289–5824.

    Google Scholar 

  • Sobsey, M. D., & Glass, J. S. (1980). Poliovirus concentration from tap water with electropositive adsorbent filters. Applied and Environmental Microbiology, 40, 201–210.

    PubMed  CAS  Google Scholar 

  • Sobsey, M. D., & Glass, J. S. (1984). Influence of water quality on enteric virus concentration by microporous filter methods. Applied and Environmental Microbiology, 47, 956–960.

    PubMed  CAS  Google Scholar 

  • Sobsey, M. D., Glass, J. S., Jacobs, R. R., & Rutala, W. A. (1980). Modifications of the tentative standard method for improved virus recovery efficiency. Journal of the American Water Works Association, -72, 350–355.

    Google Scholar 

  • Sobsey, M. D., & Hickey, A. R. (1985). Effects of humic and fulvic acids on poliovirus concentration from water by microporous filtration. Applied and Environmental Microbiology, 49, 259–264.

    PubMed  CAS  Google Scholar 

  • Sobsey, M. D., & Jones, B. L. (1979). Concentration of poliovirus from tap water using positively charged microporous filters. Applied and Environmental Microbiology, 37, 588–595.

    PubMed  CAS  Google Scholar 

  • Sobsey, M. D., Moore, R. S., & Glass, J. S. (1981). Evaluating adsorbent filter performance for enteric virus concentrations in tap water. Journal of the American Water Works Association, 73, 542–548.

    Google Scholar 

  • Sobsey, M. D., Wallis, C., Henderson, M., & Melnick, J. L. (1973). Concentration of enteroviruses from large volumes of water. Applied Microbiology, 26, 529–534.

    PubMed  CAS  Google Scholar 

  • Sorber, C. A., Malina, J. F., & Sagik, B. P. (1972). Virus rejection by reverse osmosis-ultrafiltration processes. Water Research, 6, 1377–1388.

    Article  Google Scholar 

  • Soule, H., Genoulaz, O., Gratacap-Cavallier, B., Chevallier, P., Liu, J. X., & Seigneurin, J. M. (2000). Ultrafiltration and reverse transcription-polymerase chain reaction: An efficient process for poliovirus, rotavirus, and hepatitis A virus detection in water. Water Research, 34, 1063–1067.

    Article  CAS  Google Scholar 

  • Stevenson, R. (1967). Quantitative recovery of viruses from dilute suspensions. In G. Berg (Ed.), Transmission of viruses by the water route (p. 143). London: Interscience.

    Google Scholar 

  • Sweet, B. H., McHale, J. S., Hardy, K. J., Morten, F., Smith, J. K., & Klein, E. (1971). Concentration of virus from water by osmotic ultrafiltration—I: Biological aspects. Water Research, 5, 823–829.

    Article  Google Scholar 

  • Toranzos, G. A., Erdos, G. W., & Farrah, S. R. (1986). Virus adsorption to microporous filters modified by in situ precipitation of metallic salts. Water Science and Technology, 18, 141–148.

    CAS  Google Scholar 

  • U. S. Environmental Protection Agency. (2010). Method 1615. Measurement of enterovirus and norovirus occurrence in water by culture and RT-qPCR. Accessed January 19, 2012, from http://www.epa.gov/oamcinc1/1200011/method1615.pdf.

  • van Heerden, J., Ehlers, M. M., Heim, A., & Grabow, W. O. K. (2005). Prevalence, quantification and typing of adenoviruses in river and treated drinking water in South Africa. Journal of Applied Microbiology, 99, 234–242.

    Article  PubMed  CAS  Google Scholar 

  • van Zyl, W. B., Williams, P. J., Grabow, W. O. K., & Taylor, M. B. (2004). Application of a molecular method for the detection of group A rotaviruses in raw and treated water. Water and Science Technology, 50, 223–228.

    Google Scholar 

  • Victoria, M., Giumaraes, F., Fumian, T., Ferreira, F., Vieira, C., Leite, J. P., et al. (2009). Evaluation of an adsorption-elution method for detection of astrovirus and norovirus in environmental waters. Journal of Virological Methods, 156, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Vilagines, P., Sarrette, B., Champsaur, H., Hugues, B., Dubrou, S., Joret, J. C., et al. (1997). Round robin investigation of glass wool method for poliovirus recovery from drinking water and sea water. Water Science and Technology, 35, 445–449.

    Article  CAS  Google Scholar 

  • Vilagines, P., Sarrette, B., Husson, G., & Vilagines, R. (1993). Glass wool for virus concentration at ambient water pH level. Water Science and Technology, 27, 299–306.

    Google Scholar 

  • Vilagines, P., Sarrette, B., & Vilagines, R. (1982). Preformed magnesium hydroxide precipitate for second-step concentration of enteroviruses from drinking and surface waters. Canadian Journal of Microbiology, 28, 783–787.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, J. (2001). Membrane filtration handbook; practical tips and hints. Osmonics, Inc. Accessed October 13, 2011, from http://www.ionics.com/content/pdf/1229223-%20Lit-%20Membrane%20Filtration%20Handbook.pdf.

  • Wallis, C., Henderson, M., & Melnick, J. L. (1972a). Enterovirus concentration on cellulose membranes. Applied Microbiology, 23, 476–480.

    PubMed  CAS  Google Scholar 

  • Wallis, C., Homma, A., & Melnick, J. L. (1972b). Apparatus for concentrating viruses from large volumes. Journal of the American Water Works Association, 64, 189–195.

    Google Scholar 

  • Wallis, C., & Melnick, J. L. (1967a). Concentration of enteroviruses on membrane filters. Journal of Virology, 1, 277–472.

    Google Scholar 

  • Wallis, C., & Melnick, J. L. (1967b). Concentration of viruses on aluminum and calcium salts. American Journal of Epidemiology, 85, 459–468.

    PubMed  CAS  Google Scholar 

  • Wallis, C., & Melnick, J. (1967c). Concentration of viruses from sewage by adsorption on Millipore membranes. Bulletin of the World Health Organization, 36, 219–225.

    PubMed  CAS  Google Scholar 

  • Wallis, C., & Melnick, J. (1967d). Concentration of viruses on aluminum phosphate and aluminum hydroxide precipitates. In G. Berg (Ed.), Transmission of viruses by the water route (pp. 120–138). London: Interscience.

    Google Scholar 

  • Wallis, C., Melnick, J. L., & Fields, J. E. (1970). Detection of viruses in large volumes of natural waters by concentration on insoluble polyelectrolytes. Water Research, 4, 787–796.

    Article  CAS  Google Scholar 

  • Wallis, C., Melnick, J. L., & Gerba, C. P. (1979). Concentration of viruses from water by membrane chromatography. Annual Review of Microbiology, 33, 413–437.

    Article  PubMed  CAS  Google Scholar 

  • Winona, L. J., Ommani, A. W., Olszewski, J., Nuzzo, J. B., & Oshima, K. H. (2001). Efficient and predictable recovery of viruses from water by small scale ultrafiltration systems. Canadian Journal of Microbiology, 47, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  • Zerda, K. S., Gerba, C. P., Hou, K. C., & Goyal, S. M. (1985). Adsorption of viruses to charge-modified silica. Applied and Environmental Microbiology, 49, 91–95.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly R. Bright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikner, L.A., Gerba, C.P. & Bright, K.R. Concentration and Recovery of Viruses from Water: A Comprehensive Review. Food Environ Virol 4, 41–67 (2012). https://doi.org/10.1007/s12560-012-9080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-012-9080-2

Keywords

Navigation