Skip to main content

Advertisement

Log in

Multi-scale aquifer characterization and groundwater flow model parameterization using direct push technologies

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Direct push (DP) technologies are typically used for cost-effective geotechnical characterization of unconsolidated soils and sediments. In more recent developments, DP technologies have been used for efficient hydraulic conductivity (K) characterization along vertical profiles with sampling resolutions of up to a few centimetres. Until date, however, only a limited number of studies document high-resolution in situ DP data for three-dimensional conceptual hydrogeological model development and groundwater flow model parameterization. This study demonstrates how DP technologies improve building of a conceptual hydrogeological model. We further evaluate the degree to which the DP-derived hydrogeological parameter K, measured across different spatial scales, improves performance of a regional groundwater flow model. The study area covers an area of ~60 km2 with two overlying, mainly unconsolidated sand aquifers separated by a 5–7 m thick highly heterogeneous clay layer (in north-eastern Belgium). The hydrostratigraphy was obtained from an analysis of cored boreholes and about 265 cone penetration tests (CPTs). The hydrogeological parameter K was derived from a combined analysis of core and CPT data and also from hydraulic direct push tests. A total of 50 three-dimensional realizations of K were generated using a non-stationary multivariate geostatistical approach. To preserve the measured K values in the stochastic realizations, the groundwater model K realizations were conditioned on the borehole and direct push data. Optimization was performed to select the best performing model parameterization out of the 50 realizations. This model outperformed a previously developed reference model with homogeneous K fields for all hydrogeological layers. Comparison of particle tracking simulations, based either on the optimal heterogeneous or reference homogeneous groundwater model flow fields, demonstrate the impact DP-derived subsurface heterogeneity in K can have on groundwater flow and solute transport. We demonstrated that DP technologies, especially when calibrated with site-specific data, provide high-resolution 3D subsurface data for building more reliable conceptual models and increasing groundwater flow model performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anderman ER, Hill MC (2000) MODFLOW-2000, the US geological survey modular ground-water model—documentation of the hydrogeologic-unit flow (HUF) package. USGS Open file report 00-342, Denver, Colorado

  • Battle-Aguilar J, Brouyere S, Dassargues A, Morasch B, Hunkeler D, Hohener P, Diels L, Vanbroekhoeven K, Seuntjens P, Halen H (2009) Benzene dispersion and natural attenuation in an alluvial aquifer with strong interactions with surface water. J Hydrol 361:305–317

    Article  Google Scholar 

  • Beerten K, Wemaere I, Gedeon M, Labat S, Rogiers B, Mallants D, Salah S, Leterme B (2010) Geological, hydrogeological and hydrological data for the Dessel disposal site. Project near surface disposal of category A waste at Dessel. STB-SIE (HYD)—Version 1, NIROND-TR 2009-05 E, p 261

  • Bhattacharya B, Solomatine DP (2005) Machine learning in soil classification. Proc Int Jt Conf Neural Netw 19:2694–2699

    Google Scholar 

  • Bierkens MFP (2005) Designing a monitoring network for detecting groundwater pollution with stochastic simulation and a cost model. Stoch Env Res Risk Assess 20(5):335–351. doi:10.1007/s00477-005-0025-2

    Article  Google Scholar 

  • Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifer with completely or partially penetrating wells. Water Resour Res 12:423–428

    Article  Google Scholar 

  • Butler JJ (2002) A simple correction for slug tests in small-diameter wells. Ground Water 40(3):303–308

    Article  Google Scholar 

  • Butler JJ, Dietrich P (2004) New methods for high-resolution characterization of spatial variations in hydraulic conductivity. In: International Symposium on Hydrogeological Investigation and Remedial Technology, Jhongli, Taiwan, pp 42–55

  • Butler JJ, Healey JM, McCall GW, Garnett EJ, Loheide SP II (2002) Hydraulic tests with direct-push equipment. Ground Water 40(1):25–36

    Article  Google Scholar 

  • Butler JJ, Dietrich P, Wittig V, Christy T (2007) Characterizing hydraulic conductivity with the direct-push permeameter. Ground Water 45(4):409–419

    Article  Google Scholar 

  • Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16:1190–1208

    Article  Google Scholar 

  • Chai J, Agung P, Hino T, Igaya Y, Carter J (2011) Estimating hydraulic conductivity from piezocone soundings. Géotechnique 61(8):699–708. doi:10.1680/geot.10.P.009

    Google Scholar 

  • Chai J, Sheng D, Carter JP, Zhu H (2012) Coefficient of consolidation from non-standard piezocone dissipation curves. Comput Geotech 41:13–22. doi:10.1016/j.compgeo.2011.11.005

    Article  Google Scholar 

  • Christian J, Van Der Sluijs JP, Brown J, Van Der Keur P (2006) A framework for dealing with uncertainty due to model structure error. Adv Water Resour 29:1586–1597. doi:10.1016/j.advwatres.2005.11.013

    Article  Google Scholar 

  • Christian J, Van Der Sluijs JP, Lajer A, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process—A framework and guidance. Water 22:1543–1556. doi:10.1016/j.envsoft.2007.02.004

    Google Scholar 

  • Dietrich P, Leven C (2006) Direct push-technologies. In: Kirsch R (ed) Groundwater geophysics. Springer, Berlin, pp 321–340

    Chapter  Google Scholar 

  • Dietrich P, Butler JJ, Faiss K (2008) A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46(2):323–328

    Article  Google Scholar 

  • Elsworth D, Lee DS (2007) Limits in determining permeability from on-the-fly uCPT sounding. Géotechnique 57(8):679–685. doi:10.1680/geot.2007.57.8.679

    Article  Google Scholar 

  • Flach GP, Harris MK, Smits AD, Syms FH (2005) Modeling aquifer heterogeneity using cone penetration testing data and stochastic upscaling methods. Environ Geosci 12(1):1–15

    Article  Google Scholar 

  • Gedeon M (2008) Neogene Aquifer Model, SCK·CEN-ER-48, Mol., p 110

  • Gedeon M, Mallants D (2012) Sensitivity analysis of a combined groundwater flow and solute transport model using local-grid refinement: a case study. Math Geosci 44(7):881–899. doi:10.1007/s11004-012-9416-3

    Article  Google Scholar 

  • Gedeon M, Mallants D, Vandersteen K, Rogiers B, Laloy E (2011) Hydrogeological modelling of the Dessel site—Overview report, p 227

  • GEOPROBE (2007) GEOPROBE hydraulic profiling tool (HPT) systems: standard operating procedure. Technical Bulletin MK3137, GEOPROBE

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

  • Hammond GE, Lichtner PC (2010) Field-scale model for the natural attenuation of uranium at the Hanford 300 Area using high-performance computing. Water Resour Res 46(9):1–31. doi:10.1029/2009WR008819

    Article  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model—the ground-water flow process: US Geological Survey Techniques and Methods 6-A16, USGS, 2005

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model—user guide to modularization concepts and the ground-water flow process: US Geological Survey Open-File Report 00-92, p 121

  • Harris P, Charlton M, Fotheringham A (2010) Moving window kriging with geographically weighted variograms. Stoch Environ Res Risk Assess 24:1193–1209. doi:10.1007/s00477-010-0391-2

    Article  Google Scholar 

  • Huysmans M, Madarász T, Dassargues A (2006) Risk assessment of groundwater pollution using sensitivity analysis and a worst-case scenario analysis. Environ Geol 50(2):180–193. doi:10.1007/s00254-006-0197-1

    Article  Google Scholar 

  • Johnson BA, Carpenter PJ (2013) Geophysical response of slackwater and sandy terrace deposits near Savanna, Northwestern Illinois. Environ Earth Sci 68(4):955–964. doi:10.1007/s12665-012-1798-5

    Article  Google Scholar 

  • Journel AG, Xu W (1994) Posterior identification of histograms conditional to local data. Math Geol 22:323–359

    Article  Google Scholar 

  • Köber R, Hornbruch G, Leven C, Tischer L, Grossmann J, Dietrich P, Weiss H, Dahmke A (2009) Evaluation of combined direct-push methods used for aquifer model generation. Ground Water 47(4):536–546. doi:10.1111/j.1745-6584.2009.00554.x

    Article  Google Scholar 

  • Labat S, Gedeon M, Beerten K, Maes T (2011) Dessel-5 borehole: technical aspects and hydrogeological investigations. SCK·CEN-ER-151, p 39

  • Laga P, Louwye S, Geets S (2001) Paleogene and Neogene lithostratigraphic units (Belgium). Geologica Belgica 4(1–2):135–152

    Google Scholar 

  • Lee DS, Elsworth D, Hryciw R (2008) Hydraulic conductivity measurement from on-the-fly uCPT sounding and from VisCPT. J Geotechn Geoenviron Eng 134(12):1720–1729. doi:10.1061/(ASCE)1090-0241(2008)134:12(1720)

    Article  Google Scholar 

  • Lessoff SC, Schneidewind U, Leven C, Blum P, Dietrich P, Dagan G (2010) Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resour Res 46(12):1–9

    Article  Google Scholar 

  • Leterme B, Mallants D (2012) Simulation of evapotranspiration and groundwater recharge in the nete catchment accounting for different land cover types and for present and future climate conditions. Project near surface disposal of category A waste at Dessel. External report of the Belgian Nuclear Research Centre. SCK·CEN-ER-192

  • Liu G, Butler JJ, Bohling GC, Reboulet E, Knobbe S, Hyndman DW (2009) A new method for high-resolution characterization of hydraulic conductivity. Water Resour Res 45(8):1–6

    Article  Google Scholar 

  • Liu G, Butler JJ, Reboulet E, Knobbe S (2011) Hydraulic conductivity profiling with direct push methods. Grundwasser 17(1):19–29. doi:10.1007/s00767-011-0182-9

    Article  Google Scholar 

  • Louwye S, De Schepper S (2010) The Miocene–Pliocene hiatus in the southern North Sea Basin (northern Belgium) revealed by dinoflagellate cysts. Geol Mag 147(05):760–776

    Article  Google Scholar 

  • Louwye S, Laga P (2008) Dinoflagellate cyst stratigraphy and palaeoenvironment of the marginal marine Middle and Upper Miocene of the eastern Campine area, northern Belgium (southern North Sea Basin). Geol J 43(1):75–94

    Article  Google Scholar 

  • Louwye S, De Schepper S, Laga P, Vandenberghe N (2007) The Upper Miocene of the southern North Sea Basin (northern Belgium): a palaeoenvironmental and stratigraphical reconstruction using dinoflagellate cysts. Geol Mag 144(1):33–52

    Article  Google Scholar 

  • Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. Blackie Academic/Routledge Publishing, New York

    Google Scholar 

  • Machuca-Mory DF, Deutsch CV (2012) Non-stationary geostatistical modeling based on distance weighted statistics and distributions. Math Geosci 45(1):31–48. doi:10.1007/s11004-012-9428-z

    Article  Google Scholar 

  • McCall W, Nielsen DM, Farrington SP, Christy TM (2006) Use of direct-push technologies in environmental site characterization and ground-water monitoring. In: Nielsen DM (ed) Practical handbook of environmental site characterization and ground-water monitoring. CRC Press Taylor and Francis Group, Boca Raton, pp 345–471

    Google Scholar 

  • McCall W, Christy TM, Christopherson T, Issacs H (2009) Application of direct push methods to investigate uranium distribution in an alluvial aquifer. Ground Water Monit Remediat 29(4):65–76

    Article  Google Scholar 

  • McLennan JA (2002) The Effect of the Simulation Path in Sequential Gaussian Simulation. Centre for Computational Geostatistics report 2002-54, p 16

  • Nelder JA, Mead R (1965) A simplex algorithm for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Nilsson B, Højberg A, Refsgaard J, Troldborg L (2007) Uncertainty in geological and hydrogeological data. Hydrol Earth Syst Sci 11:1551–1561

    Article  Google Scholar 

  • ONDRAF/NIRAS (2010) Het cAt-project in Dessel. Een langetermijnoplossing voor het Belgische categorie A-afval. Retrieved from http://www.niras-cat.be/downloads/cAt_masterplan_NL_LOW.pdf. Accessed 12 July 2011

  • Parez L, Fauriel R (1988) Le piézocône améliorations apportées à la reconnaissance des sols. Rev Franc Géotech 44:13–27

    Google Scholar 

  • Patyn J, Ledoux E, Bonne A (1989) Geohydrological research in relation to radioactive waste disposal in an argillaceous formation. J Hydrol 109(3–4):267–285

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Pollock DW (1994) User’s Guide for MODPATH/MODPATH-PLOT, Version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference ground-water flow model: US Geological Survey Open-File Report 94-464, 6 ch

  • Rein A, Popp S, Zacharias S, Leven C, Bittens M, Dietrich P (2011) Comparison of approaches for the characterization of contamination at rural megasites. Environ Earth Sci 63(6):1239–1249. doi:10.1007/s12665-010-0797-7

    Article  Google Scholar 

  • Robertson PK (1990) Soil classification using the cone penetration test. Can Geotech J 27(1):151–158

    Article  Google Scholar 

  • Robertson P (2010) Estimating in situ soil permeability from CPT & CPTu. CPT’10, 2nd international symposium on cone penetration testing vol. 2, p 51

  • Robertson PK, Wride CE (1998) Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J 35:442–459

    Article  Google Scholar 

  • Rogiers B, Mallants D, Batelaan O, Gedeon M, Huysmans M, Dassargues A (In prep.) Model-based classification and automated lithostratigraphical mapping of CPT data. In preparation

  • Rogiers B, Schiltz M, Beerten K, Gedeon M, Mallants D, Batelaan O, Dassargues A, Huysmans M (2010) Groundwater model parameter identification using a combination of cone penetration tests and borehole data. In: Proceedings of the IAHR International Groundwater Symposium 2010, Valencia, 22–24 September 2010, pp 19

  • Rogiers B, Mallants D, Batelaan O, Gedeon M, Huysmans M, Dassargues A (2012a) Estimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks. Math Geosci 44(6):739–763

    Article  Google Scholar 

  • Rogiers B, Mallants D, Batelaan O, Gedeon M, Huysmans M, Dassargues A (2012b) The usefulness of CPTs for deterministic, spatially heterogeneous, large-scale aquitard parameterisation. In: Oswald SE, Kolditz O, Attinger S (Eds.), Models—repositories of knowledge, IAHS Publ. 355, IAHS Press, Wallingford, pp 41–47

  • Rogiers B, Winters P, Huysmans M, Beerten K, Mallants D, Gedeon M, Batelaan O, Dassargues A (2012c) Centimeter-scale secondary information on hydraulic conductivity using a hand-held air permeameter on borehole cores. Geophysical Research Abstracts 14: EGU2012-1794-1. EGU General Assembly 2012, Vienna, 22–27 April 2012

  • Rogiers B, Winters P, Huysmans M, Beerten K, Mallants D, Gedeon M, Batelaan O, Dassargues A (2013) High resolution hydraulic conductivity logging of borehole cores using air permeability measurements. Hydrogeol J. doi:10.1007/s10040-014-1144-y

    Google Scholar 

  • Rojas R, Feyen L, Dassargues A (2008) Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour Res 44(12):1–16. doi:10.1029/2008WR006908

    Article  Google Scholar 

  • Saito H, Goovaerts P (2003) Selective remediation of contaminated sites using a two-level multiphase strategy and geostatistics. Environ Sci Technol 37(9):1912–1918

    Article  Google Scholar 

  • Schiltz M (2008) Lithological and stratigraphical interpretation by means of cone penetration tests (CPT’s) in the Dessel-Kasterlee-Geel-Mol area. Bvba SAMSUFFIT Geoservices, Fieldsurvey cAt 2008

  • Schiltz M (2010) Lithological and stratigraphical interpretation of cone penetration tests (CPT’s) executed for the first tumulus at the disposal site in Dessel and in the Dessel-Kasterlee-Geel-Mol area. Bvba SAMSUFFIT Geoservices, Fieldsurvey cAt 2010

  • Selroos J-O, Painter SL (2012) Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden). Hydrogeol J 20:1467–1481. doi:10.1007/s10040-012-0888-5

    Article  Google Scholar 

  • Šimůnek J, Sejna M, van Genuchten MT (2005) HYDRUS-1D, version 4.14, code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated porous media, Tech. rep., University of California Riverside, 2005

  • Springer RK, Gelhar LW (1991) Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts, US. Geol Surv Water Res Invest Rep 91–4034:36–40

    Google Scholar 

  • Teh C, Houlsby G (1991) An analytical study of the cone penetration test in clay. Geotechnique 41(1):17–34

    Article  Google Scholar 

  • Tillmann A, Englert A, Nyari Z, Fejes I, Vanderborght J, Vereecken H (2008) Characterization of subsoil heterogeneity, estimation of grain size distribution and hydraulic conductivity at the Krauthausen test site using Cone Penetration Test. J Contam Hydrol 95(1–2):57–75

    Article  Google Scholar 

  • Tinter M (2012) Vergleich direkter und indirekter Verfahren zur Bestimmung des Durchlässigkeitsbeiwertes an klastischen Sedimenten der Mol-Formation am Standort Dessel in Belgien. Universität Leipzig, Masterarbeit

    Google Scholar 

  • Van Baars S, Van De Graaf HC (2007) Determination of organic soil permeability using the piezocone dissipation test. Environ Eng Geosci 13(3):197–203. doi:10.2113/gseegeosci.13.3.197

    Article  Google Scholar 

  • Vienken T (2010) Critical evaluation of vertical high resolution methods for determining hydraulic conductivity. Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften

  • Vienken T, Tinter M, Rogiers B, Leven C, Dietrich P (2012) Evaluation of field methods for vertical high resolution aquifer characterization. Abstract ID 1494473, AGU Fall Meeting, San Francisco, USA, 3–7 December 2012

  • Wouters L, Schiltz M (2012) Overview of the field investigations in and around the nuclear site of Mol-Dessel, NIROND-TR 2011-42

  • Yu L, Rogiers B, Gedeon M, Marivoet J, De Craen M, Mallants D (2013) A critical review of laboratory and in situ hydraulic conductivity measurements for the Boom Clay in Belgium. Appl Clay Sci 75–76:1–12. doi:10.1016/j.clay.2013.02.018

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for providing the CPT data and supporting the UFZ hydraulic direct push campaign. Findings and conclusions in this paper are those of the authors and do not necessarily represent the official position of ONDRAF/NIRAS.

The authors thank Markus Tinter, Manuel Kreck and Helko Kotas for performing and interpreting the HPT, DPIL and DPST measurements. The authors further wish to acknowledge the Fund for Scientific Research—Flanders for providing a Postdoctoral Fellowship to Marijke Huysmans. We also thank Luk Peeters for useful discussions concerning the groundwater flow model refinement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Rogiers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogiers, B., Vienken, T., Gedeon, M. et al. Multi-scale aquifer characterization and groundwater flow model parameterization using direct push technologies. Environ Earth Sci 72, 1303–1324 (2014). https://doi.org/10.1007/s12665-014-3416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3416-1

Keywords

Navigation