Skip to main content
Log in

Arsenate adsorption at the sediment–water interface: sorption experiments and modelling

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Arsenate adsorption was studied in three clastic sediments, as a function of solution pH (4.0–9.0) and arsenate concentration. Using known mineral values, protolytic constants obtained from the literature and K ads values (obtained by fitting experimental adsorption data with empirical adsorption model), the constant capacitance surface complexation model was used to explain the adsorption behavior. The experimental and modelling approaches indicate that arsenate adsorption increases with increased pH, exhibiting a maximum adsorption value before decreasing at higher pH. Per unit mass, sample S3 (smectite–quartz/muscovite–illite sample) adsorbs more arsenate in the pH range 5–8.5, with 98% of sites occupied at pH 6. S1 and S2 have less adsorption capacity with maxima adsorption in the pH ranges of 6–8.5 and 4–6, respectively. The calculation of saturation indices by PHREEQC at different pH reveals that the solution was undersaturated with respect to aluminum arsenate (AlAsO42H2O), scorodite (FeAsO42H2O), brucite and silica, and supersaturated with respect to gibbsite, kaolinite, illite and montmorillonite (for S3 sample). Increased arsenate concentration (in isotherm experiments) may not produce new solid phases, such as AlAsO42H2O and/or FeAsO42H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avena MJ (2002) Acid–base behavior of clay surfaces in aqueous media. In: Hubbard A (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York, pp 37–63

    Google Scholar 

  • Avena MJ, De Pauli CP (1998) Proton adsorption and electrokinetics of an Argentinean montmorillonite. J Colloid Interf Sci 202:195–204

    Article  Google Scholar 

  • Banerjee K, Amy GL, Prevost M, Nour S, Jekel M, Gallagher PM, Blumenschein CD (2008) Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res 42:3371–3378

    Article  Google Scholar 

  • Beaulieu BT, Savage K (2005) Arsenate Adsorption Structures on Aluminum Oxide and Phyllosilicate Mineral Surfaces in Smelter-Impacted Soils. Environ Sci Technol 39:3571–3579

    Article  Google Scholar 

  • Bolt GH, Van Riemsdijk WH (1987) Surface Chemical process in soils. In: Stumm W (ed) Aquatic Surface Chemistry. Wiley, New York

    Google Scholar 

  • Borgnino L, Giacomelli CE, Avena M, De Pauli CP (2010a) Phosphate adsorbed on Fe(III) modified montmorillonite: Surface complexation studied by ATR-FTIR spectroscopy. Colloids Surf Physicochem Eng Aspects 353:238–244

    Article  Google Scholar 

  • Borgnino L, Garcia MG, del Hidalgo MV, Avena M, De Pauli CP, Blesa MA, Depetris PJ (2010b) Modeling the acid–base surface properties of aquatic sediments. Aquat Geochem 16:279–291

    Article  Google Scholar 

  • Borkovec M (1997) Origin of 1-pK and 2-pK models for ionizable water–solid interfaces. Langmuir 13:2608–2613

    Article  Google Scholar 

  • Bradbury MH, Baeyens B (2002) Sorption of Eu on Na and Ca- montmorillonite: experimental investigation and modeling with cation exchange and surface complexation. Geochim Cosmochim Acta 66:2325–2334

    Article  Google Scholar 

  • Bradbury MH, Baeyens B (2009) Sorption modeling on illite. Part I: titration measurements and sorption of Ni, Co, Eu and Sn. Geochim Cosmochim Acta 73:990–1003

    Article  Google Scholar 

  • Cama J, Ganor J, Ayora C, Lasaga CA (2000) Smectite dissolution kinetics at 80°C and pH 8.8. Geochim et Cosmochim Acta 64:2701–2717

    Article  Google Scholar 

  • Chakraborty S, Wolthers M, Chatterjee D, Charlet L (2007) Adsorption of arsenite and arsenate onto muscovite and biotite mica. J Colloid Interf Sci 309:392–401

    Article  Google Scholar 

  • Davis JA, James RO, Lechie JO (1978) Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. J Colloid Interf Sci 63:480–499

    Article  Google Scholar 

  • Du Q, Sun Z, Forsling W, Tang H (1997a) Acid–base properties of aqueous illite surfaces. J Colloid Interf Sci 187:221–231

    Article  Google Scholar 

  • Du Q, Sun Z, Forsling W, Tang H (1997b) Adsorption of copper at aqueous illite surfaces. J Colloid Interf Sci 187:232–242

    Article  Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413–421

    Article  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil–selenium. Soil Sci Soc Am J 52:954–958

    Article  Google Scholar 

  • Goldberg S, Sposito G (1984) A chemical model of phosphate adsorption by soils: II. Noncalcareous soils. Soil Sci Soc Am J 48:779–783

    Article  Google Scholar 

  • Goldberg S, Lesch SM, Suarez DL (2000) Predicting boron adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Sci Soc Am J 64:1356–1363

    Article  Google Scholar 

  • Goldberg S, Lesch SM, Suarez DL (2002) Predicting molybdenum adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Sci Soc Am J 66:1836–1842

    Article  Google Scholar 

  • Goldberg S, Suarez DL, Basta NT, Lesch SM (2004) Predicting boron adsorption isotherms by Midwestern soils using the constant capacitance model. Soil Sci Soc Am J 68:795–801

    Article  Google Scholar 

  • Goldberg S, Lesch SM, Suarez DL, Basta NT (2005) Predicting arsenate adsorption by soils using chemical parameters in the constant capacitance model. Soil Sci Soc Am J 69:1389–1398

    Article  Google Scholar 

  • Goldberg S, Criscenti LJ, Turner DR, Davis J, Cantreli KJ (2007) Adsorption–desorption process in subsurface reactive transport modeling. Vadose Zone J 6:407–435

    Article  Google Scholar 

  • Gu X, Evans LJ (2007) Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto Fithian illite. J Colloid Interf 307:317–325

    Article  Google Scholar 

  • Guillot S, Charlet L (2007) Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1785–1794

    Article  Google Scholar 

  • Hiemstra T, van Riemsdijk WH (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J Colloid Interf Sci 179:488–508

    Article  Google Scholar 

  • Hiemstra T, van Riemsdijk WH, Bolt GH (1989a) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach: I. Model description an evaluation of intrinsic reaction constants. J Colloid Interf Sci 133:91–104

    Article  Google Scholar 

  • Hiemstra T, De Wit JCM, van Riemsdijk WH (1989b) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach: II. Application to various important (hydr)oxides. J Colloid Interf Sci 133:105–117

    Article  Google Scholar 

  • Hinz C, Gaston LA, Selim HM (1994) Effect of sorption isotherm type on predictions of solute mobility in soil. Water Resour Res 30:3013–3021

    Article  Google Scholar 

  • Hopenhayn C (2006) Arsenic in drinking water: impact on human health. Elements 2:103–107

    Article  Google Scholar 

  • Huertas FJ, Chou L, Wollast R (1999) Mechamism of kaolinite dissolution at room temperature and pressure. II: kinetic study. Geochim et Cosmochim Acta 63:3261–3275

    Article  Google Scholar 

  • Jara AA, Goldberg S, Mora ML (2005) Studies of the surface charge of amorphous aluminosilicates using surface complexation models. J Colloid Interf Sci 292:160–170

    Article  Google Scholar 

  • Jeon C-S, Baek K, Park J-K, Oh Y-K, Lee S-D (2009) Adsorption characteristics of As (V) on iron-coated zeolite. J Hazard Mater 163:804–808

    Article  Google Scholar 

  • Jiang W, Zhang S, Shan X-Q, Feng M, Zhu Y-G, Mc Laren RG (2005) Adsorption of arsenate on soils. Part 2: Modeling the relationship between adsorption capacity and soil physicochemical properties using 16 Chinese soils. Environ Pollut 138:285–289

    Article  Google Scholar 

  • Kalinowski BE, Schweda P (1996) Kinetic of muscovite, phlogopite and biotite dissolution and alteration at pH 1–4 room temperature. Geochim et Cosmochim Acta 60:367–385

    Article  Google Scholar 

  • Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2399–2428

    Article  Google Scholar 

  • Kinniburgh DG, Barker JA, Whitefield M (1983) A comparison of some simple adsorption isotherms for describing divalent cation adsorption by ferrihydrite. J Colloid Interf Sci 95:370–384

    Article  Google Scholar 

  • Köhler SJ, Bosbach D, Oelkers EH (2005) Do clay mineral dissolution rates reach steady state? Geochim et Cosmochim Acta 69:1997–2006

    Article  Google Scholar 

  • Kooner ZS, Jardine PM, Feldman S (1995) Competitive surface complexation reactions of sulfate and natural organic carbon on soil. J Environ Qual 24:656–662

    Article  Google Scholar 

  • Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337:439–448

    Article  Google Scholar 

  • Luengo C, Brigante M, Antelo J, Avena M (2006) Kinetic of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J Colloid Interf Sci 300:511–518

    Article  Google Scholar 

  • Manning B, Goldberg S (1996) Modeling Arsenate competitive adsorption on Kaolinite, montmorillonite and Illite. Clays Clay Miner 44:609–623

    Article  Google Scholar 

  • Missana T, Alonso U, Garcia-Gutierrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interf Sci 334:132–138

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, p 249

    Google Scholar 

  • Mukhopadhyay B, Walther JV (2001) Acid–base chemistry of albite surfaces in aqueous solutions at standard temperature and pressure. Chem Geol 174:415–443

    Article  Google Scholar 

  • Nagy KL, Cygan RT, Hanchar JM, Sturchio NC (1999) Gibbsite growth kinetics on gibbsite, kaolinite, and muscovite substrates: atomic force microscopy evidences per epitaxy and assessment of reactive surface area. Geochim et Cosmochim Acta 63:2337–2351

    Article  Google Scholar 

  • Parkhust DL, Appelo CA (1999) Users guide to PHREEQC, U.S. geological survey

  • Rozalén ML, Huertas FJ, Brady PV, Cama J, García-Palma S, Linares J (2008) Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25°C. Geochim et Cosmochim Acta 72:4224–4253

    Article  Google Scholar 

  • Schindler PW, Gamsjäger H (1972) Acid–base reactions of the TiO2 (Anatase) water interface and the point of zero charge of TiO2 suspensions. Kolloid ZZ Polym 250:759–763

    Article  Google Scholar 

  • Singh N, Kumar D, Sahu AP (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28:359–365

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Sparks DL (1995) Environmental soil and chemistry. Academic Press, London

    Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Stumm W (1992) Chemistry of the solid–water interface. Wiley, New York

    Google Scholar 

  • Stumm W, Huang CP, Jenking SR (1970) Specific chemical interaction affecting the stability of dispersed systems. Croat Chem Acta 42:223–245

    Google Scholar 

  • Taubaso C, Dos Santos Afonso M, Torres Sánchez RM (2004) Modelling soil surface charge density using mineral composition. Geoderma 121:123–133

    Article  Google Scholar 

  • Tertre E, Castet S, Berger G, Loubet M, Giffaut E (2006) Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60°C: experimental and modeling study. Geochim et Cosmochim Acta 70:4579–4599

    Article  Google Scholar 

  • Wisawapipat W, Kheoruenromne I, Suddhiprakarn A, Gilkes RJ (2009) Phosphate sorption and desorption by Thai upland soils. Geoderma 153:408–415

    Article  Google Scholar 

  • Xu Y, Axe L (2005) Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption. J Colloid Interf Sci 282:11–19

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by Argentina’s FONCYT, SECYT-UNC and CONICET. L Borgnino, C. P. De Pauli and P. Depetris are members of CICyT in Argentina′s CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Borgnino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgnino, L., De Pauli, C.P. & Depetris, P.J. Arsenate adsorption at the sediment–water interface: sorption experiments and modelling. Environ Earth Sci 65, 441–451 (2012). https://doi.org/10.1007/s12665-011-1009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1009-9

Keywords

Navigation