Skip to main content
Log in

Approximate solutions to a spatially-dependent mass Dirac equation for modified Hylleraas plus Eckart potential with Yukawa potential as a tensor

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In presence of spin (pseudo-spin) symmetry, approximate bounded fermionic (anti-fermionic) states of the effective mass Dirac equation for modified Hylleraas plus Eckart potential within Yukawa tensor interaction have been studied by means of the parametric Nikiforov–Uvarov method. We have obtained the analytical relativistic energy eigenvalues and their corresponding normalized two-spinor components of the wave functions in closed form by making an appropriate approximation to centrifugal (pseudo-centrifugal) term for any spin–orbit quantum number κ. Some special cases for various potential models have been investigated in relativistic and nonrelativistic limit. Further, numerical results for energy eigenvalues have been obtained within the exact spin and pseudo-spin symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J Yu, S H Dong and G H Sun Phys. Lett. A 322 290 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. J Yu and S H Dong Phys. Lett. A 325 194 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. S H Dong, J J Pena, C Pacheco-Garcia and J Garcia-Ravelo Mod. Phys. Lett. A 22 1039 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. S M Ikhdair and R Sever Phys. Scr. 79 035002 (2009)

    Article  ADS  Google Scholar 

  5. S M Ikhdair Eur. Phys. J. A 40 143 (2009)

    Article  ADS  Google Scholar 

  6. M Eshghi, M Hamzavi and S M Ikhdair Adv. High Energy Phys. 2012 873619 (2012)

    Article  MathSciNet  Google Scholar 

  7. M Eshghi, M Hamzavi and S M Ikhdair Chin. Phys. B 22 030303 (2013)

    Article  ADS  Google Scholar 

  8. A N Ikot, B H Yazarloo, A D Antia and H Hassanabadi Indian J. Phys. 87 913 (2013)

  9. A D Antia, A N Ikot, I O Akpan and O A Awoga Indian J. Phys. 87 155 (2013)

  10. G Mao Phys. Rev. C 67 044318 (2003)

    Article  ADS  Google Scholar 

  11. P Alberto, R Lisboa, M Malheiro and A S de Castro Phys. Rev. C 71 034313 (2005)

    Article  ADS  Google Scholar 

  12. M Barranco, M Pi, S M Gatica, E S Hernandez and J Navarro Phys. Rev. B 56 8997 (1997)

    Article  ADS  Google Scholar 

  13. L I Serra and E Lipparini Europhys. Lett. 40 667 (1997)

    Article  ADS  Google Scholar 

  14. A G M Schmidt Phys. Lett. A 353 459 (2006)

    Article  ADS  Google Scholar 

  15. S M Ikhdair and R Sever Appl. Math. Comput. 216 545 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. M Hamzavi, M Eshghi and S M Ikhdair J. Math. Phys. 53 082101 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. P Alberto, M Fiolhais, M Malheiro, A Delfino and M Chiapparini Phys. Rev. Lett. 86 5015 (2001)

    Google Scholar 

  18. P Alberto, M Fiolhais, M Malheiro, A Delfino and M Chiapparini Phys. Rev. C 65 034307 (2002)

    Article  ADS  Google Scholar 

  19. R Lisboa, M Malheiro, P Alberto, M Fiolhais and A S de Castro Phys. Rev. C 81 064324 (2010)

    Article  ADS  Google Scholar 

  20. J Y Guo Phys. Rev. C 85 021302(R) (2012)

    Article  ADS  Google Scholar 

  21. S W Chen and J Y Guo Phys. Rev. C 85 054312 (2012)

    Article  ADS  Google Scholar 

  22. A F Nikiforov and V B Uvarov Special Functions of Mathematical Physics (Birkhausr: Berlin) (1988)

    Book  MATH  Google Scholar 

  23. M C Zhang, G H Sun and S H Dong Phys. Lett. A 374 704 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. M G Miranda, G H Sun and S H Dong Int. J. Mod. Phys. E 19 123 (2010)

    Article  ADS  Google Scholar 

  25. S M Ikhdair Int. J. Mod. Phys. C 20 1563 (2009)

    Article  ADS  MATH  Google Scholar 

  26. S M Ikhdair J. Math. Phys. 52 052303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. S M Ikhdair Cent. Eur. J. Phys. 10 361 (2012)

    Article  Google Scholar 

  28. S M Ikhdair and B J Falaye Phys. Scr. 87 035002 (2013)

    Article  ADS  Google Scholar 

  29. M Eshghi and H Mehraban Chin. J. Phys. 50 533 (2012)

    MathSciNet  Google Scholar 

  30. M Eshghi Canadian J. Phys. 91 71 (2013)

    Article  Google Scholar 

  31. S M Ikhdair, B J Falaye and M Hamzavi Chin. Phys. Lett. 30 020305 (2013)

    Article  Google Scholar 

  32. A N Ikot, O A Awoga and A D Antia Chin. Phys. B 22 020304 (2013)

    Article  Google Scholar 

  33. H Hassanabadi, E Maghsoodi, S Zarrinkamar and H Rahimov Chin. Phys. B 21 120302 (2012)

    Article  ADS  Google Scholar 

  34. Y P Varshni Rev. Mod. Phys. 29 664 (1957)

    Article  ADS  Google Scholar 

  35. E A Hylleraas J. Chem. Phys. 3 595 (1935)

    Article  ADS  Google Scholar 

  36. A P Zhang, W C Qiang and Y W Ling Chin. Phys. Lett. 26 100302 (2006)

    Google Scholar 

  37. G I Wei, C Y Long, X Y Duan and S H Dong Phys. Scr. 77 035001 (2008)

    Article  ADS  Google Scholar 

  38. G F Wei, S H Dong and V B Bezerra Int. J. Mod. Phys. A 24 161 (2009)

    Article  ADS  MATH  Google Scholar 

  39. F Cooper, A Khare and U Sukhatme Phys. Rep. 251 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  40. J J Weiss J. Chem. Phys. 41 1120 (1964)

    Article  ADS  Google Scholar 

  41. A Cimas, M Aschi, C Barrientos, V M Rayón, J A Sordo and A Largo Chem. Phys. Lett. 374 594 (2003)

    Article  ADS  Google Scholar 

  42. W Greiner Relativistic Quantum Mechanics (Berlin: Springer) (2000)

    MATH  Google Scholar 

  43. G F wei and S H Dong Phys. Lett. B 686 288 (2010)

    Article  ADS  Google Scholar 

  44. G F wei and S H Dong Eur. Phys. J. A 43 185 (2010)

    Article  ADS  Google Scholar 

  45. G F wei and S H Dong Phys. Scr. 81 035009 (2010)

    Article  ADS  Google Scholar 

  46. G F wei and S H Dong Europhys. Lett. (EPL) 87 40004 (2004)

    Article  Google Scholar 

  47. H Yukawa Proc. Phys. Math. Soc. Jpn. 17 48 (1935)

    Google Scholar 

  48. H Yukawa and S Sakata Proc. Phys. Math. Soc. Jpn. 19 1084 (1935)

    Google Scholar 

  49. X Q Luo, Y Y Li and H Kröger Sci. China Ser. G 49 60 (2006)

    Article  MATH  Google Scholar 

  50. O Aydoğdu, E Maghsoodi and H Hassanabadi Chin. Phys. B 22 010302 (2013)

    Article  Google Scholar 

  51. R L Greene and C Aldrich Phys. Rev. A 14 2363 (1976)

    Article  ADS  Google Scholar 

  52. M Hamzavi, S M Ikhdair and B Ita Phys. Scr. 85 045009 (2012)

    Article  ADS  Google Scholar 

  53. W C Qiang and S H Dong Phys. Lett. A 368 13 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. A Soylu, O Bayrak and I Boztosun J. Phys. A: Math. Theor. 41 065308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  55. S M Ikhdair and R Sever J. Phys. A: Math. Theor. 44 355301 (2011)

    Article  MathSciNet  Google Scholar 

  56. S M Ikhdair and R Sever Appl. Math. Comput. 218 10082 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  57. W C Qiang and S H Dong Phys. Scr. 79 045004 (2009)

    Article  ADS  Google Scholar 

  58. G Malli Chem. Phys. Lett. 26 578 (1981)

    Article  ADS  Google Scholar 

  59. C S Lai Phys. Lett. A 112 211 (1985)

    Article  ADS  Google Scholar 

  60. J D Dow Phys. Rev. Lett. 30 903 (1973)

    Article  ADS  Google Scholar 

  61. J A Olson and D A Micha J. Chem. Phys. 68 4352 (1978)

    Article  ADS  Google Scholar 

  62. S M Ikhdair and R Sever Appl. Math. Comput. 216 911 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  63. S Debnath and B Biswas EJTP 26 191 (2012)

    Google Scholar 

  64. S M Ikhdair Phys. Scr. 83 015010 (2011)

    Article  ADS  Google Scholar 

  65. S H Dong, W C Qiang, G H Sun and V B Bezerra J. Phys. A: Math. Theor. 40 10535 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. F Taşkin and G Koçak Chin. Phys. B 19 090314 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Hamzavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikhdair, S.M., Hamzavi, M. Approximate solutions to a spatially-dependent mass Dirac equation for modified Hylleraas plus Eckart potential with Yukawa potential as a tensor. Indian J Phys 88, 695–707 (2014). https://doi.org/10.1007/s12648-014-0464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0464-z

Keywords

PACS Nos.

Navigation