Skip to main content
Log in

Unconventional Hamilton-type variational principles for electromagnetic elastodynamics

  • Published:
Science in China Series G Aims and scope Submit manuscript

Abstract

According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erigen, A. C., Maugin, G. A., Electrodynamics Of Continua, New York: Springer-Verlag, 1989.

    Google Scholar 

  2. Maugin, G. A., A continuum approach to magnonphonon couplings I, Int. J. Eng. Sci., 1981, 17: 1073–1091.

    MathSciNet  Google Scholar 

  3. Pao, Y. H., Yeh, C. S., A linear theory for soft ferromagnetic elastic solids, Int. J. Eng. Sci., 1973, 11(4): 415–436.

    Google Scholar 

  4. Pao, Y. H., Electromagnetic Forces In Deformable Continua, Mechanics Today, New York: Pengamon Press Inc., 1978, 4: 209–305.

    Google Scholar 

  5. Moon, F. C., Magneto-solid Mechanics, New York: John Willey & Sons. Inc., 1984.

    Google Scholar 

  6. van de Ven, Magnetoelastic buckling of a beam of elliptic cross section, Acta Mechanica, 1984, 51: 119–138.

    Article  ADS  MATH  Google Scholar 

  7. Miya, K., Hara, K., Someya, K., Experimental and theoretical study on magnetoelastic buckling of a ferromagnetic cantilevered beam-plate, ASME J. Appl. Mech., 1978, 45: 355–360.

    Google Scholar 

  8. Paria, G., Magneto-elasticity and magneto-thermo-elasticity, Adv. Appl. Mech., 1967, 10: 73–112.

    Google Scholar 

  9. Brown, W. F., Magnetoelasticity Interactions, Berlin: Springer-Verlag, 1966.

    Google Scholar 

  10. Zhou, Y. H., Zheng, X. J., Structural Mechanics Of Electromagnetic Soilds (in Chinese), Beijing: Science Press, 1999.

    Google Scholar 

  11. Zheng, X. J., Wang, X. Z., Analysis of magnetoelastic interaction of rectangular ferromagnetic plates with nonlinear magnetization, Int. J. Solids Struct., 2001, 38: 8641–8652.

    Google Scholar 

  12. Wang, X. Z., Zhou, Y. H., Zheng, X. J., A generalized variational model of magneto-thermo-elasticity for nonlinearly magnetized ferroelastic bodies, Int. J. Eng. Sci., 2002, 40: 1957–1973.

    MathSciNet  Google Scholar 

  13. Zhou, Y. H., Gao, Y. W., Zheng, X. J., Buckling and post-buckling analysis for magneto-elastic-plastic ferromagnetic beam-plates with unmovable simple supports, Int. J. Solids Struct., 2003, 40: 2875–2887.

    Google Scholar 

  14. Tiersten, H. F., Variational principle for saturated magnetoelastic insulators, J. Math. Phys., 1965, 6: 779–785.

    Article  MathSciNet  Google Scholar 

  15. Brown, W. F., Theory of magnetoelastic effects in ferromagnetism, J. Appl. Phys., 1965, 36: 994–1002.

    Google Scholar 

  16. Parkus, H., Variational Principles In Thermo-Magneto-Elasticity, New York: Springer-Verlag, 1972.

    Google Scholar 

  17. Zhou, Y. H., Zheng, X. J., A generalized variational principle and theoretical model for magnetoelastic interaction of ferromagnetic bodies, Science in China, Ser. A, 1999, 42(6): 618–626.

    MathSciNet  Google Scholar 

  18. Yao, W. A. Generalized variational principles of electromagnetoelastic solids, J. Comput. Mech. (in Chinese), 2003, 20(4): 487–489.

    Google Scholar 

  19. Wang, X. M., Shen, Y. P., Some fundamental theory of electro-magneto-thermo-elastic media, J. Appl.Mech. (in Chinese), 1995, 12(2): 28–39.

    Google Scholar 

  20. Luo, E., Gurtin-type variational principles in linear elastodynamics, Science in China, Ser. A, 1988, 31(3): 298–312.

    Google Scholar 

  21. Luo, E., Cheung, Y. K., On the variational principles in linear elastodynamics. Acta Mechanica Sinica, 1988, 4(4): 337–349.

    MathSciNet  Google Scholar 

  22. Luo, E. et al., Unconventional Hamilton-type variational principles for nonlinear coupled thermoelastodynamics, Science in China, Ser. A, 2002, 45(6): 783–794.

    Google Scholar 

  23. Finlayson, B. A., Scruven, L., On the search for variational principles, Int. J. Heat Mass Transfer, 1967, 10: 799.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo En.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, E., Zhu, H. & Yuan, L. Unconventional Hamilton-type variational principles for electromagnetic elastodynamics. SCI CHINA SER G 49, 119–128 (2006). https://doi.org/10.1007/s11433-005-0209-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-005-0209-2

Keywords

Navigation