Skip to main content
Log in

Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90–231 Neurotoxic Effects in Cerebellar Granule Neurons

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90–231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90–231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in “pure” cerebellar granule neuron cultures, PrP90–231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90–231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90–231 neurotoxicity, whereas NMDA blockade by d(−)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90–231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguzzi A, O’ Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arena S, Pattarozzi A, Corsaro A, Schettini G, Florio T (2005) Somatostatin receptor subtype-dependent regulation of nitric oxide release: involvement of different intracellular pathways. Mol Endocrinol Baltimore, Md 19:255–267

    Article  CAS  Google Scholar 

  • Banelli B, Carra E, Barbieri F, Wurth R, Parodi F, Pattarozzi A, Carosio R, Forlani A, Allemanni G, Marubbi D, Florio T, Daga A, Romani M (2015) The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle 14:3418–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Betmouni S, Perry VH, Gordon JL (1996) Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience 74:1–5

    Article  CAS  PubMed  Google Scholar 

  • Brown DR (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J Neurochem 73:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Brown DR, Schmidt B, Kretzschmar HA (1998) A prion protein fragment primes type 1 astrocytes to proliferation signals from microglia. Neurobiol Dis 4:410–422

    Article  CAS  PubMed  Google Scholar 

  • Bruce ME, McBride PA, Farquhar CF (1989) Precise targeting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neurosci Lett 102:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  CAS  PubMed  Google Scholar 

  • Bugiani O, Giaccone G, Piccardo P, Morbin M, Tagliavini F, Ghetti B (2000) Neuropathology of Gerstmann-Straussler-Scheinker disease. Microsc Res Tech 50:10–15

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319:25–28

    Article  CAS  PubMed  Google Scholar 

  • Caughey B (2003) Prion protein conversions: insight into mechanisms, TSE transmission barriers and strains. Br Med Bull 66:109–120

    Article  CAS  PubMed  Google Scholar 

  • Chabry J, Ratsimanohatra C, Sponne I, Elena PP, Vincent JP, Pillot T (2003) In vivo and in vitro neurotoxicity of the human prion protein (PrP) fragment P118-135 independently of PrP expression. J Neurosci 23:462–469

    CAS  PubMed  Google Scholar 

  • Chiesa R (2015) The elusive role of the prion protein and the mechanism of toxicity in prion disease. PLoS Pathog 11:e1004745

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiovitti K, Corsaro A, Thellung S, Villa V, Paludi D, D’Arrigo C, Russo C, Perico A, Ianieri A, Di Cola D, Vergara A, Aceto A, Florio T (2007) Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects. J Neurochem 103:2597–2609

    CAS  PubMed  Google Scholar 

  • Corsaro A, Thellung S, Russo C, Villa V, Arena S, D’Adamo MC, Paludi D, Rossi Principe D, Damonte G, Benatti U, Aceto A, Tagliavini F, Schettini G, Florio T (2002) Expression in E. coli and purification of recombinant fragments of wild type and mutant human prion protein. Neurochem Int 41:55–63

    Article  CAS  PubMed  Google Scholar 

  • Corsaro A, Thellung S, Villa V, Principe DR, Paludi D, Arena S, Millo E, Schettini D, Damonte G, Aceto A, Schettini G, Florio T (2003) Prion protein fragment 106-126 induces a p38 MAP kinase-dependent apoptosis in SH-SY5Y neuroblastoma cells independently from the amyloid fibril formation. Ann N Y Acad Sci 1010:610–622

    Article  CAS  PubMed  Google Scholar 

  • Corsaro A, Paludi D, Villa V, D’Arrigo C, Chiovitti K, Thellung S, Russo C, Di Cola D, Ballerini P, Patrone E, Schettini G, Aceto A, Florio T (2006) Conformation dependent pro-apoptotic activity of the recombinant human prion protein fragment 90-231. Int J Immunopathol Pharmacol 19:339–356

    Article  CAS  PubMed  Google Scholar 

  • Corsaro A, Thellung S, Chiovitti K, Villa V, Simi A, Raggi F, Paludi D, Russo C, Aceto A, Florio T (2009) Dual modulation of ERK1/2 and p 38 MAP kinase activities induced by minocycline reverses the neurotoxic effects of the prion protein fragment 90-231. Neurotox Res 15:138–154. doi:10.1007/s12640-009-9015-3

    Article  CAS  PubMed  Google Scholar 

  • Corsaro A, Thellung S, Bucciarelli T, Scotti L, Chiovitti K, Villa V, D’Arrigo C, Aceto A, Florio T (2011) High hydrophobic amino acid exposure is responsible of the neurotoxic effects induced by E200K or D202N disease-related mutations of the human prion protein. Int J Biochem Cell Biol 43:372–382. doi:10.1016/j.biocel.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  • Corsaro A, Thellung S, Villa V, Nizzari M, Aceto A, Florio T (2012a) Recombinant human prion protein fragment 90-231, a useful model to study prion neurotoxicity omics. J Integr Biol 16:50–59. doi:10.1089/omi.2011.0038

    CAS  Google Scholar 

  • Corsaro A, Thellung S, Villa V, Nizzari M, Florio T (2012b) Role of prion protein aggregation in neurotoxicity. Int J Mol Sci 13:8648–8669. doi:10.3390/ijms13078648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeArmond SJ, Mobley WC, DeMott DL, Barry RA, Beckstead JH, Prusiner SB (1987) Changes in the localization of brain prion proteins during scrapie. Infect Neurol 37:1271–1280

    Article  CAS  Google Scholar 

  • Diack AB, Alibhai JD, Barron R, Bradford B, Piccardo P, Manson JC (2016) Insights into mechanisms of chronic neurodegeneration Int J Mol Sci 17

  • Dugan LL, Bruno VM, Amagasu SM, Giffard RG (1995) Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci 15:4545–4555

    CAS  PubMed  Google Scholar 

  • Eikelenboom P, Rozemuller AJ, Hoozemans JJ, Veerhuis R, van Gool WA (2000) Neuroinflammation and Alzheimer disease: clinical and therapeutic implications Alzheimer. Dis Assoc Disord 14(Suppl 1):S54–S61

    Article  CAS  Google Scholar 

  • Falsig J, Sonati T, Herrmann US, Saban D, Li B, Arroyo K, Ballmer B, Liberski PP, Aguzzi A (2012) Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures. PLoS Pathog 8:e1002985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreiro E, Costa R, Marques S, Cardoso SM, Oliveira CR, Pereira CM (2008) Involvement of mitochondria in endoplasmic reticulum stress-induced apoptotic cell death pathway triggered by the prion peptide PrP(106-126). J Neurochem 104:766–776

    CAS  PubMed  Google Scholar 

  • Fiala M, Cribbs DH, Rosenthal M, Bernard G (2007) Phagocytosis of amyloid-beta and inflammation: two faces of innate immunity in Alzheimer’s disease. J Alzheimers Dis 11:457–463

    Article  CAS  PubMed  Google Scholar 

  • Florio T, Grimaldi M, Scorziello A, Salmona M, Bugiani O, Tagliavini F, Forloni G, Schettini G (1996) Intracellular calcium rise through L-type calcium channels, as molecular mechanism for prion protein fragment 106-126-induced astroglial proliferation. Biochem Biophys Res Commun 228:397–405

    Article  CAS  PubMed  Google Scholar 

  • Florio T, Thellung S, Amico C, Robello M, Salmona M, Bugiani O, Tagliavini F, Forloni G, Schettini G (1998) Prion protein fragment 106-126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J Neurosci Res 54:341–352. doi:10.1002/(SICI)1097-4547(19981101)54:3<341::AID-JNR5>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  • Fluharty BR, Biasini E, Stravalaci M, Sclip A, Diomede L, Balducci C, La Vitola P, Messa M, Colombo L, Forloni G, Borsello T, Gobbi M, Harris DA (2013) An N-terminal fragment of the prion protein binds to amyloid-beta oligomers and inhibits their neurotoxicity in vivo. J Biol Chem 288:7857–7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forloni G (1996) Neurotoxicity of beta-amyloid and prion peptides. Curr Opin Neurol 9:492–500

    Article  CAS  PubMed  Google Scholar 

  • Forloni G, Artuso V, La Vitola P, Balducci C (2016) Oligomeropathies and pathogenesis of Alzheimer and Parkinson’s diseases. Mov Disord 31:771–781. doi:10.1002/mds.26624

    Article  CAS  PubMed  Google Scholar 

  • Garcao P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-beta and prion peptides: role in neurodegeneration. J Neurosci Res 84:182–193

    Article  CAS  PubMed  Google Scholar 

  • Gatta E, Cupello A, Di Braccio M, Grossi G, Ferruzzi R, Roma G, Robello M (2010) New 1,5-benzodiazepine compounds: activity at native GABA(A) receptors. Neuroscience 166:917–923

    Article  CAS  PubMed  Google Scholar 

  • Ghetti B, Dlouhy SR, Giaccone G, Bugiani O, Frangione B, Farlow MR, Tagliavini F (1995) Gerstmann-Straussler-Scheinker disease and the Indiana kindred. Brain Pathol 5:61–75

    Article  CAS  PubMed  Google Scholar 

  • Guentchev M, Siedlak SL, Jarius C, Tagliavini F, Castellani RJ, Perry G, Smith MA, Budka H (2002) Oxidative damage to nucleic acids in human prion disease. Neurobiol Dis 9:275–281

    Article  CAS  PubMed  Google Scholar 

  • Guiroy DC, Wakayama I, Liberski PP, Gajdusek DC (1994) Relationship of microglia and scrapie amyloid-immunoreactive plaques in kuru, Creutzfeldt-Jakob disease and Gerstmann-Straussler syndrome. Acta Neuropathol 87:526–530

    Article  CAS  PubMed  Google Scholar 

  • Haas J, Storch-Hagenlocher B, Biessmann A, Wildemann B (2002) Inducible nitric oxide synthase and argininosuccinate synthetase: co-induction in brain tissue of patients with Alzheimer’s dementia and following stimulation with beta-amyloid 1-42 in vitro. Neurosci Lett 322:121–125

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Farquhar C (1994) Morphogenesis of amyloid plaques in 87V murine scrapie. Neuropathol Appl Neurobiol 20:535–542

    Article  CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Chae SC, Lee DK, Chromy B, Lee SC, Park YC, Klein WL, Krafft GA, Hong ST (2003) Selective neuronal degeneration induced by soluble oligomeric amyloid beta protein. FASEB J 17:118–120

    CAS  PubMed  Google Scholar 

  • Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 24:9838–9846

    Article  CAS  PubMed  Google Scholar 

  • Leszek J, Barreto GE, Gasiorowski K, Koutsouraki E, Avila-Rodrigues M, Aliev G (2016) Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system CNS. Neurol Disord Drug Targets 15:329–336

    Article  CAS  Google Scholar 

  • Liberski PP, Sikorska B, Lindenbaum S, Goldfarb LG, McLean C, Hainfellner JA, Brown P (2012) Kuru: genes, cannibals and neuropathology. J Neuropathol Exp Neurol 71:92–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335

    Article  CAS  PubMed  Google Scholar 

  • Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marella M, Chabry J (2004) Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 24:620–627

    Article  CAS  PubMed  Google Scholar 

  • Marella M, Gaggioli C, Batoz M, Deckert M, Tartare-Deckert S, Chabry J (2005) Pathological prion protein exposure switches on neuronal mitogen-activated protein kinase pathway resulting in microglia recruitment. J Biol Chem 280:1529–1534. doi:10.1074/jbc.M410966200

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2015) Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin Ther Targets 19:497–506

    Article  CAS  PubMed  Google Scholar 

  • Miyazono M, Iwaki T, Kitamoto T, Kaneko Y, Doh-ura K, Tateishi J (1991) A comparative immunohistochemical study of Kuru and senile plaques with a special reference to glial reactions at various stages of amyloid plaque formation. Am J Pathol 139:589–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monaco S, Zanusso G, Mazzucco S, Rizzuto N (2006) Cerebral amyloidoses: molecular pathways and therapeutic challenges. Curr Med Chem 13:1903–1913

    Article  PubMed  Google Scholar 

  • Montagna P, Gambetti P, Cortelli P, Lugaresi E (2003) Familial and sporadic fatal insomnia. Lancet Neurol 2:167–176

    Article  CAS  PubMed  Google Scholar 

  • Neniskyte U, Neher JJ, Brown GC (2011) Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 286:39904–39913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notari S, Strammiello R, Capellari S, Giese A, Cescatti M, Grassi J, Ghetti B, Langeveld JP, Zou WQ, Gambetti P, Kretzschmar HA, Parchi P (2008) Characterization of truncated forms of abnormal prion protein in Creutzfeldt-Jakob disease. J Biol Chem 283:30557–30565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836

    Article  CAS  PubMed  Google Scholar 

  • Paradisi S, Sacchetti B, Balduzzi M, Gaudi S, Malchiodi-Albedi F (2004) Astrocyte modulation of in vitro beta-amyloid neurotoxicity. Glia 46:252–260

    Article  PubMed  Google Scholar 

  • Paulis D, Maras B, Schinina ME, di Francesco L, Principe S, Galeno R, Abdel-Haq H, Cardone F, Florio T, Pocchiari M, Mazzanti M (2011) The pathological prion protein forms ionic conductance in lipid bilayer. Neurochem Int 59:168–174

    Article  CAS  PubMed  Google Scholar 

  • Pellistri F, Bucciantini M, Relini A, Nosi D, Gliozzi A, Robello M, Stefani M (2008) Nonspecific interaction of prefibrillar amyloid aggregates with glutamatergic receptors results in Ca2+ increase in primary neuronal cells. J Biol Chem 283:29950–29960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 38:960–968. doi:10.1016/j.freeradbiomed.2004.12.021

    Article  CAS  PubMed  Google Scholar 

  • Piccioli P, Porcile C, Stanzione S, Bisaglia M, Bajetto A, Bonavia R, Florio T, Schettini G (2001) Inhibition of nuclear factor-kappaB activation induces apoptosis in cerebellar granule cells. J Neurosci Res 66:1064–1073. doi:10.1002/jnr.1251

    Article  CAS  PubMed  Google Scholar 

  • Post K, Brown DR, Groschup M, Kretzschmar HA, Riesner D (2000) Neurotoxicity but not infectivity of prion proteins can be induced reversibly in vitro. Arch Virol Suppl:265–273

  • Prusiner SB (1998) Prions Proceedings of the National Academy of Sciences of the United States of America 95:13363–13383

  • Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P (2012) Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 11:618–628

    Article  CAS  PubMed  Google Scholar 

  • Scorziello A, Meucci O, Florio T, Fattore M, Forloni G, Salmona M, Schettini G (1996) Beta 25-35 alters calcium homeostasis and induces neurotoxicity in cerebellar granule cells. J Neurochem 66:1995–2003

    Article  CAS  PubMed  Google Scholar 

  • Scorziello A, Florio T, Bajetto A, Thellung S, Schettini G (1997) TGF-beta1 prevents gp 120-induced impairment of Ca2+ homeostasis and rescues cortical neurons from apoptotic death. J Neurosci Res 49:600–607. doi:10.1002/(SICI)1097-4547(19970901)49:5<600::AID-JNR10>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. doi:10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano-Pozo A, Mielke ML, Gomez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman BT (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 179:1373–1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorce S, Nuvolone M, Keller A, Falsig J, Varol A, Schwarz P, Bieri M, Budka H, Aguzzi A (2014) The role of the NADPH oxidase NOX2 in prion pathogenesis. PLoS Pathog 10:e1004531

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorrentino S, Bucciarelli T, Corsaro A, Tosatto A, Thellung S, Villa V, Schinina ME, Maras B, Galeno R, Scotti L, Creati F, Marrone A, Re N, Aceto A, Florio T, Mazzanti M (2012) Calcium binding promotes prion protein fragment 90-231 conformational change toward a membrane destabilizing and cytotoxic structure. PLoS One 7:e38314. doi:10.1371/journal.pone.0038314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31:150–155

    Article  CAS  PubMed  Google Scholar 

  • Thellung S, Florio T, Corsaro A, Arena S, Merlino M, Salmona M, Tagliavini F, Bugiani O, Forloni G, Schettini G (2000a) Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106-126. Int J Dev Neurosci 18:481–492

    Article  CAS  PubMed  Google Scholar 

  • Thellung S, Florio T, Villa V, Corsaro A, Arena S, Amico C, Robello M, Salmona M, Forloni G, Bugiani O, Tagliavini F, Schettini G (2000b) Apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in rat cerebellar granule cells treated with the prion protein fragment 106-126. Neurobiol Dis 7:299–309

    Article  CAS  PubMed  Google Scholar 

  • Thellung S, Corsaro A, Villa V, Venezia V, Nizzari M, Bisaglia M, Russo C, Schettini G, Aceto A, Florio T (2007a) Amino-terminally truncated prion protein PrP90-231 induces microglial activation in vitro. Ann N Y Acad Sci 1096:258–270. doi:10.1196/annals.1397.092

    Article  CAS  PubMed  Google Scholar 

  • Thellung S, Villa V, Corsaro A, Pellistri F, Venezia V, Russo C, Aceto A, Robello M, Florio T (2007b) ERK1/2 and p38 MAP kinases control prion protein fragment 90-231-induced astrocyte proliferation and microglia activation. Glia 55:1469–1485

    Article  PubMed  Google Scholar 

  • Thellung S, Corsaro A, Villa V, Simi A, Vella S, Pagano A, Florio T (2011) Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis 2:e138. doi:10.1038/cddis.2011.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thellung S, Gatta E, Pellistri F, Corsaro A, Villa V, Vassalli M, Robello M, Florio T (2013) Excitotoxicity through NMDA receptors mediates cerebellar granule neuron apoptosis induced by prion protein 90-231 fragment. Neurotox Res 23:301–314

    Article  CAS  PubMed  Google Scholar 

  • Tousseyn T, Bajsarowicz K, Sanchez H, Gheyara A, Oehler A, Geschwind M, DeArmond B, DeArmond SJ (2015) Prion disease induces Alzheimer disease-like Neuropathologic changes. J Neuropathol Exp Neurol 74:873–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Everbroeck B, Dobbeleir I, De Waele M, De Leenheir E, Lubke U, Martin JJ, Cras P (2004) Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer’s disease. Acta Neuropathol 108:194–200

    Article  CAS  PubMed  Google Scholar 

  • Villa V, Thellung S, Bajetto A, Gatta E, Robello M, Novelli F, Tasso B, Tonelli M, Florio T (2016a) Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide. Pharmacol Res 113:500–514. doi:10.1016/j.phrs.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  • Villa V, Thellung S, Corsaro A, Novelli F, Tasso B, Colucci-D’Amato L, Gatta E, Tonelli M, Florio T (2016b) Celecoxib inhibits prion protein 90-231-mediated pro-inflammatory responses in microglial cells. Mol Neurobiol 53:57–72

    Article  CAS  PubMed  Google Scholar 

  • Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E, Esler WP, Maggio JE, Mantyh PW (1998) Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 18:2161–2173

    CAS  PubMed  Google Scholar 

  • Williams A, Lucassen PJ, Ritchie D, Bruce M (1997) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144:433–438

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Yuan J, Qing L, Cali I, Mikol J, Delisle MB, Uro-Coste E, Zeng L, Abouelsaad M, Gazgalis D, Martinez MC, Wang GX, Brown P, Ironside JW, Gambetti P, Kong Q, Zou WQ (2014) Comparative study of prions in iatrogenic and sporadic Creutzfeldt-Jakob disease. J Clin Cell Immunol 5:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie WL, Shi Q, Zhang J, Zhang BY, Gong HS, Guo Y, Wang SB, Xu Y, Wang K, Chen C, Liu Y, Dong XP (2013) Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K. J Mol Neurosci 51:919–932

    Article  CAS  PubMed  Google Scholar 

  • Zarkovic K (2003) 4-hydroxynonenal and neurodegenerative diseases. Mol Asp Med 24:293–303

    Article  CAS  Google Scholar 

  • Zhang S, Eitan E, Mattson MP (2017) Early involvement of lysosome dysfunction in the degeneration of cerebral cortical neurons caused by the lipid peroxidation product 4-hydroxynonenal. J Neurochem 140:941–954. doi:10.1111/jnc.13957

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the Italian Ministry of University and Research (Accordi di Programma FIRB 2011, project num. RBAP11HSZS) and Compagnia di San Paolo (2013) to TF and Fondo Ricerca Ateneo (FRA, University of Genova) to ST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Florio.

Ethics declarations

Experimental procedures and animal care complied with the EU Parliament and Council Directive of 22 September 2010 (2010/63/EU) and were approved by the Italian Ministry of Health (protocol number 2207-1) in accordance with D.M. 116/1992. All efforts were made to minimize animal suffering and to reduce the number of animal used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thellung, S., Gatta, E., Pellistri, F. et al. Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90–231 Neurotoxic Effects in Cerebellar Granule Neurons. Neurotox Res 32, 381–397 (2017). https://doi.org/10.1007/s12640-017-9749-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9749-2

Keywords

Navigation