Skip to main content

Advertisement

Log in

Abnormal Activation of Microglia Accompanied with Disrupted CX3CR1/CX3CL1 Pathway in the Brains of the Hamsters Infected with Scrapie Agent 263K

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Microglial cells are resident mononuclear phagocytes of the central nervous system (CNS). Active proliferation of microglia in the brain has been identified in neurodegenerative disorders, including some kinds of prion disease. However, the detailed regional distribution between microglia and PrPSc deposition has not been presented, and investigation of fractalkine signaling which is involved in the regulation of activation of microglia in prion disease is not well documented. In this study, the disease phenomenon of microglial accumulation in the CNS was thoroughly analyzed using a scrapie-infected experimental model. Western blots of microglia-specific markers Iba1 and CD68, immunohistochemical and immunofluorescent assays demonstrated obviously activation of microglia in almost whole brain regions in the infected animals. Under the dynamic analysis on hallmarks of activation of microglia, a time-dependent increase of Iba1 and CD68 was detected, accompanied by accumulation of PrPSc and progression of neurodegenerative symptoms. With serial brain sections and double staining of Iba1 and PrPSc, we observed that the microglia distributed around PrPSc deposits in 263K-infected hamsters’ brains, proposing PrPSc phagocytosis. Flow cytometry assays with the single-cell suspensions prepared from the cortical region of the infected brains verified an activation of microglial population. ELISA assays of the cytokines in brain homogenates revealed significant upregulations of interleukin (IL)-1β, IL-6 and TNF-α when infected. Evaluation of fractalkine signaling in the infected hamsters’ brains showed progressively downregulation of CX3CL1 during the incubation. Prion peptide PrP106-126 also disrupted fractalkine and evoked microglial activation in rat primary neuron–glia mixed cultures. Our data here demonstrate an activated status of microglia in CNS tissues of infectious prion disease, possibly through fractalkine signaling deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akiyama H, McGeer PL (1990) Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30:81–93

    Article  PubMed  CAS  Google Scholar 

  • Baker CA, Martin D, Manuelidis L (2002) Microglia from Creutzfeldt–Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 76:10905–10913

    Article  PubMed  CAS  Google Scholar 

  • Balu DT, Hodes GE, Hill TE et al (2009) Flow cytometric analysis of BrdU incorporation as a high-throughput method for measuring adult neurogenesis in the mouse. J Pharmacol Toxicol Methods 59:100–107

    Article  PubMed  CAS  Google Scholar 

  • Campbell IL, Eddleston M, Kemper P, Oldstone MB, Hobbs MV (1994) Activation of cerebral cytokine gene expression and its correlation with onset of reactive astrocyte and acute-phase response gene expression in scrapie. J Virol 68:2383–2387

    PubMed  CAS  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  PubMed  CAS  Google Scholar 

  • Chang RC, Hudson PM, Wilson BC, Liu B, Abel H, Hong JS (2000) High concentrations of extracellular potassium enhance bacterial endotoxin lipopolysaccharide-induced neurotoxicity in glia-neuron mixed cultures. Neuroscience 97:757–764

    Article  PubMed  CAS  Google Scholar 

  • Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJ (2000) Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci 20:RC87

    PubMed  CAS  Google Scholar 

  • Cho SH, Sun B, Zhou Y et al (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286:32713–32722

    Article  PubMed  CAS  Google Scholar 

  • da Silva RP, Gordon S (1999) Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein. Biochem J 338(Pt 3):687–694

    Article  PubMed  Google Scholar 

  • Dickson DW, Mattiace LA, Kure K, Hutchins K, Lyman WD, Brosnan CF (1991) Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab Invest 64:135–156

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Bittner T, Jung CK et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13:411–413

    Article  PubMed  CAS  Google Scholar 

  • Gao JM, Gao C, Han J et al (2004) Dynamic analyses of PrP and PrP(Sc) in brain tissues of golden hamsters infected with scrapie strain 263 K revealed various PrP forms. Biomed Environ Sci 17:8–20

    PubMed  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science 330:783–788

    Article  PubMed  CAS  Google Scholar 

  • Guiroy DC, Wakayama I, Liberski PP, Gajdusek DC (1994) Relationship of microglia and scrapie amyloid-immunoreactive plaques in kuru, Creutzfeldt–Jakob disease and Gerstmann–Straussler syndrome. Acta Neuropathol 87:526–530

    Article  PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen S et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95:10896–10901

    Article  PubMed  CAS  Google Scholar 

  • Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37:314–327

    Article  PubMed  Google Scholar 

  • Jeffrey M, Halliday WG, Bell J et al (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26:41–54

    Article  PubMed  CAS  Google Scholar 

  • Kordek R, Nerurkar VR, Liberski PP, Isaacson S, Yanagihara R, Gajdusek DC (1996) Heightened expression of tumor necrosis factor alpha, interleukin 1 alpha, and glial fibrillary acidic protein in experimental Creutzfeldt–Jakob disease in mice. Proc Natl Acad Sci U S A 93:9754–9758

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: A sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Ladeby R, Wirenfeldt M, Dalmau I et al (2005a) Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Glia 50:121–131

    Article  PubMed  Google Scholar 

  • Ladeby R, Wirenfeldt M, Garcia-Ovejero D et al (2005b) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48:196–206

    Article  PubMed  CAS  Google Scholar 

  • Lamb B (2012) The roles of fractalkine signaling in neurodegenerative disease. Mol Neurodegener 7(Suppl 1):L21

    Article  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415

    Article  PubMed  CAS  Google Scholar 

  • Mackay CR (1997) Chemokines: What chemokine is that? Curr Biol 7:R384–R386

    Article  PubMed  CAS  Google Scholar 

  • Marella M, Chabry J (2004) Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 24:620–627

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7:84–92

    Article  PubMed  CAS  Google Scholar 

  • Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: The role of Abeta and its associated proteins. Neurobiol Aging 22:885–893

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Kawanokuchi J, Numata K, Suzumura A (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979:65–70

    Article  PubMed  CAS  Google Scholar 

  • Monif M, Burnstock G, Williams DA (2010) Microglia: Proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42:1753–1756

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Lloyd C, Zhou H et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387:611–617

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Gordon S (1988) Macrophages and microglia in the nervous system. Trends Neurosci 11:273–277

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Hirato J, Nakazato Y (1993) Immunohistochemical study of microglia in the Creutzfeldt–Jakob diseased brain. Acta Neuropathol 86:337–344

    Article  PubMed  CAS  Google Scholar 

  • Shi XH, Han J, Zhang J et al (2010) Clinical, histopathological and genetic studies in a family with fatal familial insomnia. Infect Genet Evol 10:292–297

    Article  PubMed  CAS  Google Scholar 

  • Solito E, Sastre M (2012) Microglia function in Alzheimer’s disease. Front Pharmacol 3:14

    Article  PubMed  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  PubMed  CAS  Google Scholar 

  • Tooyama I, Kimura H, Akiyama H, McGeer PL (1990) Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer’s disease. Brain Res 523:273–280

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Lucassen PJ, Ritchie D, Bruce M (1997a) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144:433–438

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Van Dam AM, Ritchie D, Eikelenboom P, Fraser H (1997b) Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res 754:171–180

    Article  PubMed  CAS  Google Scholar 

  • Woodroofe MN, Sarna GS, Wadhwa M et al (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: Evidence of a role for microglia in cytokine production. J Neuroimmunol 33:227–236

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chen L, Zhang BY et al (2004) Comparison study on clinical and neuropathological characteristics of hamsters inoculated with scrapie strain 263 K in different challenging pathways. Biomed Environ Sci 17:65–78

    PubMed  Google Scholar 

  • Zujovic V, Benavides J, Vige X, Carter C, Taupin V (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation Grants (81100980), China Mega-Project for Infectious Disease (2011X10004-101), the SKLID Development Grant (2008SKLID102, 2011SKLID204, and 2011SKLID211), and the Young Scholar Scientific Research Foundation of China CDC (2012A102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Xiao-Ping Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, WL., Shi, Q., Zhang, J. et al. Abnormal Activation of Microglia Accompanied with Disrupted CX3CR1/CX3CL1 Pathway in the Brains of the Hamsters Infected with Scrapie Agent 263K. J Mol Neurosci 51, 919–932 (2013). https://doi.org/10.1007/s12031-013-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0002-z

Keywords

Navigation