Skip to main content
Log in

Analysis of Silicon Based Surface Plasmon Resonance Sensors with Different Amino Acids

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A semiconductor prism coupler based nano-plasmonic sensor consisting of a high refractive index (RI) silicon prism, a gold (Au) metal film and different amino acids was used as a dielectric sample for sensing in the in the Attenuated Total Internal Reflection (ATIR) mode. An additional silicon nano-layer has been used for increasing stability and sensitivity of the surface plasmon resonance-sensor which causes enhancement of the evanescent field near the metal-analyte interface compared to the traditional three layer structure. Positional swap of the silicon nano-layer from above the metal surface to below the metal surface causes further enhances of the evanescent field near the metal-analyte interface. Performance of the nano-plasmonic sensors depending upon the high refractive index silicon prism, additional silicon nano-layer and swapping mechanism is discussed with the help of sensing performance for different amino acids with corresponding image response for the proposed nano-plasmonic sensor in a MATLAB environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev:106: 874

  2. Raether H (1988) Surface plasmons on smooth and rough surface and on gratings, 1st. Springer-Verlag, Berlin

    Google Scholar 

  3. Otto A (1968) Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z Physik 216:398–410

    Article  CAS  Google Scholar 

  4. Raether H, Kretschmann E (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch. TEIL A 23A: 2135–2136

  5. Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  6. Kuo W C, Chou C, Wu H T (2003) Optical heterodyne surface-plasmon resonance biosensor. Opt Lett 28(11):1329–1331

    Article  Google Scholar 

  7. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54(1-2):3–15

    Article  CAS  Google Scholar 

  8. Kolb DM (1982) The study of solid-liquid interfaces by surface plasmon polariton excitation. In Agranovich V M and Mills D L. Surface Polaritons, North-Holland Publishing Company, Amsterdam. New York. Oxford. pp. 299–329

  9. Badia A, Arnold S, Scheumann V, Zizlsperger J, Mack J, Jung G, Knoll W (1999) Probing the electrochemical deposition and/or desorption of self-assembled and electropolymerizable organic thin films by surface plasmon spectroscopy and atomic force microscopy. Sens Actuators B 54(1-2):145–165

    Article  CAS  Google Scholar 

  10. Ghosh S, Brahmachari K, Ray M (2012) Experimental investigation of surface plasmon resonance using tapered cylindrical light guides with metal-dielectric interface. J Sens Technol 2(1):48–54

    Article  CAS  Google Scholar 

  11. Ghosh S, Ray M Analysis of surface plasmon resonance sensors with additional semiconductor nano-layer. In: Presented at International Conference on Optics & Optoelectronics (ICOL-2014), held at Dehradun, India, 5-8th March

  12. Ghosh S, Ray M (2013) Investigation of surface plasmon resonance using differential phase jump analysis at metal-dielectric interface. J Nanosci Lett

  13. Ghosh S, Ray M (2013) Investigation of surface plasmon resonance using cylindrical dielectric-metal-dielectric (C-DMD) plasmonic configuration. Optik 125:2642–2646

    Article  Google Scholar 

  14. Ghosh S, Ray M (2014) Performance analysis of semiconductor based surface plasmon resonance structures. Sens Actuators B 205:298–304

    Article  CAS  Google Scholar 

  15. Ghosh S, Ray M (2014) Surface plasmon resonance structures in spectral interrogation using high refractive index prism materials for sensing of different amino acids. Opt. Eng. 53(7):117108(1–7)

    Google Scholar 

  16. Perlmann GE, Longsworth LG (1948) The specific refractive increment of some purified proteins. J Am Chem Soc 70(6):2719–2724

  17. Born M, Wolf E (1999) Principles of Optics (7th) expanded edition. Cambridge University Press, Cambridge

  18. Abeles F (1950) Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieux startifies. Application aux couches minces. Ann Phys (Paris) 5:596–640

    Google Scholar 

  19. Notcovich AG, Zhuk V, Lipson SG (2000) Surface plasmon resonance phase imaging, vol 76

  20. Ng SP, Loo FC, Wu SY, Kong SK, Wu CL, Ho HP (2013) Common-path spectral interferometry with temporal carrier for highly sensitive surface plasmon resonance sensing, vol 21

  21. Huang YH, Ho HP, Wu SY, Kong SK (2012) Detecting Phase Shifts in Surface Plasmon Resonance: A Review. Adv Opt Technol

  22. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett 33:2359–2541

  23. Rakic AD, Djurišic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37:5271–5283

    Article  CAS  Google Scholar 

  24. Edwards DF, Ochoa E (1980) Infrared Refractive Indexes of Silicon. Appl. Opt. 19:4130–4131

    Article  CAS  Google Scholar 

  25. Hand DB (1935) The Refractivity of Protein Solutions. J Biol Chem 108(2):703–707

    CAS  Google Scholar 

  26. Colace L, Assanto G (2009) Germanium on Silicon for Near-Infrared Light Sensing. IEEE Photonics J 1 (2):69–79

    Article  Google Scholar 

  27. Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers. Sensitivity comparison. Sens Actuators B 54(1):16–24

    Article  CAS  Google Scholar 

  28. Kan T, Kojo H, Iwase E, Matsumoto K, Shimoyama I (2010) Long-range surface plasmon resonance sensor with liquid micro-channels to maintain the symmetry condition of the of the refractive index. J Micromech Microeng 20(8):25005(7pp)

    Google Scholar 

  29. Maharana PK, Jha R (2012) Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens Actuators B 169(4):161–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Ray, M. Analysis of Silicon Based Surface Plasmon Resonance Sensors with Different Amino Acids. Silicon 7, 313–322 (2015). https://doi.org/10.1007/s12633-015-9293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9293-8

Keywords

Navigation