Skip to main content
Log in

Performance optimization of bi-metallic surface plasmon resonance based sensors with silicon layer using poynting vector analysis

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have proposed a formula to calculate the optimum thickness of Silicon (a high-index dielectric) which is introduced in a conventional bi-metallic surface plasmon resonance (SPR) sensor to enhance the sensitivity. This formula has been derived from the penetration depth analysis of the ‘instantaneous Poynting vector’ in a five-layer bi-metallic sensor structure. This formula is shown to be different from the conventional penetration depth formula of the “average Poynting vector” (intensity) which is discussed in many textbooks on optics. We have applied this formula to optimize the design parameters of a bi-metallic sensor consisting of prism-silver-gold-analyte (H2O) in Kretschmann configuration with an adjustable Si layer for various combinations of Ag/Au thicknesses to yield maximum sensitivity. The optimum thickness of any high-index dielectric layer which is used in SPR based sensors for the sensitivity enhancement can be calculated from the proposed formula and the values match very well with the experimental results already reported in the literature. Also, the optimum thickness derived using the proposed formula is found to yield the maximum sensitivity of an SPR sensor when computed using the Transfer Matrix Method (TMM) analysis. The analysis of the shape of the SPR curves for the proposed bi-metallic sensor is also done. From the paper, we can conclude that the study of the instantaneous Poynting vector plays an important role in understanding the working of optical devices which are based on the phenomenon of evanescent coupling. The analysis done in this paper can be extended to calculate the design parameters of other evanescently coupled optical devices, such as directional couplers and TE/TM polarizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Available with the corresponding author.

Code availability

Available with the corresponding author.

References

  • Akter, S., Abdur Razzak, S.M.: Highly sensitive open-channels based plasmonic biosensor in visible to near-infrared wavelength. Results Phys (2019). https://doi.org/10.1016/j.rinp.2019.102328

    Article  Google Scholar 

  • Askari, M., Hosseini, M.V.: A novel metamaterial design for achieving a large group index via classical electromagnetically induced reflectance. Opt Quantum Electron (2020). https://doi.org/10.1007/s11082-020-02302-y

    Article  Google Scholar 

  • Atkinson, K.E.: An introduction to numerical analysis. Wiley (2008)

    Google Scholar 

  • Babar, S., Weaver, J.H.: Optical constants of Cu, Ag, and Au revisited. Appl Opt (2015). https://doi.org/10.1364/ao.54.000477

    Article  Google Scholar 

  • Bhatia, P., Gupta, B.D.: Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement. Appl Opt (2011). https://doi.org/10.1364/AO.50.002032

    Article  Google Scholar 

  • Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier (2013)

    MATH  Google Scholar 

  • Chen, S., Lin, C.: Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater Res Express 6, 56503 (2019)

    Article  ADS  Google Scholar 

  • Chen, S., Lin, C.: High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization. Optik (stuttg) 127, 7514–7519 (2016)

    Article  ADS  Google Scholar 

  • Cheng, D.K.: Field and wave electromagnetics. Pearson Education India (1989)

    Google Scholar 

  • Chilwell, J., Hodgkinson, I.: Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J Opt Soc Am A (1984). https://doi.org/10.1364/josaa.1.000742

    Article  Google Scholar 

  • Dastmalchi, B., Tassin, P., Koschny, T., Soukoulis, C.M.: A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv Opt Mater (2016). https://doi.org/10.1002/adom.201500446

    Article  Google Scholar 

  • Diggavi, S., Thyagarajan, K., Ghatak, A.K.: Perturbation analysis of polarization splitting directional couplers. Appl Opt 28, 3450–3455 (1989)

    Article  ADS  Google Scholar 

  • Economou, E.N.: Surface plasmons in thin films. Phys Rev 182, 539 (1969)

    Article  ADS  Google Scholar 

  • Ghatak, A.K., Thyagarajan, K.: Optical Electronics. Cambridge University Press (1989)

    Book  Google Scholar 

  • Gupta, B.D.: Surface Plasmon Resonance Based Fiber Optic Sensors. Springer (2012)

    Book  Google Scholar 

  • Gupta, B.D., Kant, R.: Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt Laser Technol 101, 144–161 (2018)

    Article  ADS  Google Scholar 

  • Gupta, B.D., Srivastava, S.K., Verma, R.: Fiber optic sensors based on plasmonics. World Scientific (2015)

    Book  Google Scholar 

  • Hastings, J.T., Guo, J., Keathley, P.D., et al.: Optimal self-referenced sensing using long-and short-range surface plasmons. Opt Express 15, 17661–17672 (2007)

    Article  ADS  Google Scholar 

  • Homola, J.: Electromagnetic Theory of Surface Plasmons. Springer (2006)

    Book  Google Scholar 

  • Homola, J., Piliarik, M.: Surface Plasmon Resonance (SPR) Sensors. Springer (2006)

    Book  Google Scholar 

  • Hottin, J., Wijaya, E., Hay, L., et al.: Comparison of gold and silver/gold bimetallic surface for highly sensitive near-infrared SPR sensor at 1550 nm. Plasmonics 8, 619–624 (2013)

    Article  Google Scholar 

  • Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv Mater (2004). https://doi.org/10.1002/adma.200400271

    Article  Google Scholar 

  • Iga, M., Seki, A., Watanabe, K.: Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sensors Actuators B Chem 106, 363–368 (2005)

    Article  Google Scholar 

  • Isaacs, S., Abdulhalim, I.: Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Appl Phys Lett 106, 193701 (2015)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys Rev B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  • Lahav, A., Auslender, M., Abdulhalim, I.: Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett (2008). https://doi.org/10.1364/ol.33.002539

    Article  Google Scholar 

  • Lahav, A., Shalabaney, A., Abdulhalim, I.S.: Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J Nanophotonics 3, 31501 (2009)

    Article  ADS  Google Scholar 

  • Liu, L., Wang, M., Jiao, L., et al.: Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region. JOSA B 36, 1108–1116 (2019)

    Article  ADS  Google Scholar 

  • Liu, N., Weiss, T., Mesch, M., et al.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett (2010). https://doi.org/10.1021/nl902621d

    Article  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer (2007)

    Book  Google Scholar 

  • Malitson, I.H.: Interspecimen Comparison of the Refractive Index of Fused Silica. J Opt Soc Am (1965). https://doi.org/10.1364/josa.55.001205

    Article  Google Scholar 

  • Oliveira, L.C., Lima, A.M.N., Thirstrup, C., Neff, H.F.: Surface Plasmon Resonance Sensors: A Materials Guide to Design, Characterization, Optimization, and Usage. Springer (2019)

    Book  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press (2012)

    Google Scholar 

  • Piliarik M, Vaisocherová H, Homola J (2009) Surface plasmon resonance biosensing. Methods Mol. Biol.

  • Prajapati, Y.K., Pal, S., Saini, J.P.: Effect of a Metamaterial and Silicon Layers on Performance of Surface Plasmon Resonance Biosensor in Infrared Range. SILICON 10, 1451–1460 (2018)

    Article  Google Scholar 

  • Quinten, M.: Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV. Zeitschrift Für Phys B Condens Matter 101, 211–217 (1996)

    Article  ADS  Google Scholar 

  • Saad, Y., Selmi, M., Gazzah, M.H., et al.: Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer. Optik (stuttg) 190, 1–9 (2019)

    Article  ADS  Google Scholar 

  • Sadiku MNO (2015) Principles of Electromagnetics. Oxford University Press Inc. First India edition, 2009. 2

  • Schasfoort, R.B.M.: Handbook of surface plasmon resonance. Royal Society of Chemistry (2017)

    Book  Google Scholar 

  • Sexton, B.A., Feltis, B.N., Davis, T.J.: Characterisation of gold surface plasmon resonance sensor substrates. Sensors Actuators A Phys 141, 471–475 (2008)

    Article  Google Scholar 

  • Sharma EK, Singh MP, Gupta VL (1992) Multilayer waveguide with metal or absorbing layers: an exact numerical procedure. In: Emerging Optoelectronic Technologies. International Society for Optics and Photonics, pp 219–222

  • She, S.X.: Propagation loss in metal-clad waveguides and weakly absorptive waveguides by a perturbation method. Opt Lett 15, 900–902 (1990)

    Article  ADS  Google Scholar 

  • Sherry, L.J., Jin, R., Mirkin, C.A., et al.: Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett (2006). https://doi.org/10.1021/nl061286u

    Article  Google Scholar 

  • Singh, S., Mishra, S.K., Gupta, B.D.: Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sensors Actuators, A Phys. (2013). https://doi.org/10.1016/j.sna.2013.01.012

    Article  Google Scholar 

  • Snyder, A.W., Love, J.: Optical waveguide theory. Springer (2012)

    Google Scholar 

  • Sousa TAT, Lima AMN, Grande C, Estimation of biological layer thickness and refractive index of SPR sensors using neural networks (2013)

  • Suzuki, H., Sugimoto, M., Matsui, Y., Kondoh, J.: Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor. Sensors Actuators B Chem 132, 26–33 (2008)

    Article  Google Scholar 

  • Tabassum, R., Gupta, B.D.: SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations. Opt Commun (2016). https://doi.org/10.1016/j.optcom.2016.01.014

    Article  Google Scholar 

  • Tabassum, R., Gupta, B.D.: Performance Analysis of Bimetallic Layer With Zinc Oxide for SPR-Based Fiber Optic Sensor. J Light Technol (2015). https://doi.org/10.1109/JLT.2015.2479631

    Article  Google Scholar 

  • Tabassum, R., Gupta, B.D.: Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor. Biosens Bioelectron (2017). https://doi.org/10.1016/j.bios.2017.01.050

    Article  Google Scholar 

  • Taya, S.A., Shabat, M.M.: Sensitivity enhancement in optical waveguide sensors using metamaterials. Appl Phys A Mater Sci Process (2011). https://doi.org/10.1007/s00339-011-6406-0

    Article  Google Scholar 

  • Tudos AJ, Schasfoort RBM (2010) Chapter 1. Introduction to Surface Plasmon Resonance. In: Handbook of Surface Plasmon Resonance

  • Verma, A., Prakash, A., Tripathi, R.: Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt Quantum Electron (2015). https://doi.org/10.1007/s11082-014-9976-1

    Article  Google Scholar 

  • Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sensors Actuators, B Chem. (2011). https://doi.org/10.1016/j.snb.2011.08.039

    Article  Google Scholar 

  • Wang, G., Wang, C., Yang, R., et al.: A sensitive and stable surface plasmon resonance sensor based on monolayer protected silver film. Sensors 17, 2777 (2017a)

    Article  ADS  Google Scholar 

  • Wang, M., Huo, Y., Jiang, S., et al.: Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS 2 hybrid nanostructures and Au–Ag bimetallic film. RSC Adv 7, 47177–47182 (2017b)

    Article  ADS  Google Scholar 

  • Wu, L., Chu, H.S., Koh, W.S., Li, E.P.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express (2010). https://doi.org/10.1364/oe.18.014395

    Article  Google Scholar 

  • Yamamoto, Y., Kamiya, T., Yanai, H.: Characteristics of optical guided modes in multilayer metal-clad planar optical guide with low-index dielectric buffer layer. IEEE J Quantum Electron 11, 729–736 (1975)

    Article  ADS  Google Scholar 

  • Yi Meng, R., Zhang, Z., Liu Xiu, C., Qi Mei, Z.: Gold-silver alloy film based surface plasmon resonance sensor for biomarker detection. Mater Sci Eng C 116, 111126 (2020). https://doi.org/10.1016/j.msec.2020.111126

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JKA contributed to the original idea, supervised the study, and contributed to the language improvement. HK developed the software using MATLAB software for simulation and data analysis; prepared the manuscript and generated the figures.

Corresponding author

Correspondence to Jagneet Kaur Anand.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwah, H., Anand, J.K. Performance optimization of bi-metallic surface plasmon resonance based sensors with silicon layer using poynting vector analysis. Opt Quant Electron 53, 582 (2021). https://doi.org/10.1007/s11082-021-03238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03238-7

Keywords

Navigation