Skip to main content

Advertisement

Log in

Characterization of New Categories of Bioactive Based Tellurite and Silicate Glasses

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

New types of tellurite glass ceramics were prepared and studied from the viewpoint of bioactivity. The obtained results were compared with those of silicate glass ceramics. The crystallization behaviors of both silicate and tellurite glass ceramics with equal ratio of CaO/P2O5 were investigated. The silicate glass samples were transformed to glass ceramics by a thermal treatment process. While the tellurite glass ceramics were directly obtained without any thermal treatment. The microstructure of these materials was characterized by X-ray diffraction (XRD), Fourier transform infrared absorption spectroscopy (FTIR) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (SEM/EDX). The results revealed clear proof that TeO2 promoted the nucleation and crystallization processes which led to the formation of different crystalline bio-phases. While the silicate glasses showed a much lower degree of crystallinity than that presented by the tellurite glass ceramics. The crystals of tellurite containing glass were needle- like morphology, which is attributed to the one-dimensional rapid growth of the apatite-tellurite phase. On the other hand, a particle-like morphology is shown in the silicate glass matrix. Bioactivity of the glasses in simulated body fluids (SBF) was investigated. Tellurite containing glass ceramics showed a better bioactivity during the in vitro test than that of the silicate one. This was attributed to a great analogous between the morphology of crystals of tellurite glass and the morphology of hydroxyapatite in human bone, since both possess a needle-like morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandt J, Henning S, Michler G, Hein W, Bernstein A, Schulz M (2010) J of Mater Sci: Mater Med 21:283–294

    CAS  Google Scholar 

  2. Sona JS, Appleforda M, Onga JL, Wenkeb JC, Kimc JM, Choic SH, Oha DS (2011) J Control Release 153:133–140

    Article  Google Scholar 

  3. Roy M, Balla VK, Bose S, Bandyopadhyay A (2010) Advanced Engineering Materials 12:B637–B641

    Article  Google Scholar 

  4. Castellania C, Lindtnera RA, Hausbrandta P, Tscheggc E, Tscheggd SE, Zanonie G, Beckf S, Weinberga AM (2011) 7:432–440

  5. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D (2010) Indian J Med Res 132:15–30

    CAS  Google Scholar 

  6. Gerhardt LC, Boccaccini AR (2010) Materials 3:3867

    Article  CAS  Google Scholar 

  7. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB (2011) Acta Biomater 7:2355

    Article  CAS  Google Scholar 

  8. Abdelghany A, Kamal H (2014) Ceram Int 40:8003

    Article  CAS  Google Scholar 

  9. Gutzow I, Schmelzer J (1995) The vitreous state. Springer, Berlin

  10. Fokin VM, Zanotto ED (2006) J Non-Cryst Solids 352:2681–2932

    Article  CAS  Google Scholar 

  11. Lefebvrea L, Chevaliera J, Gremillarda L, Zenatib R, Tholleta G, Assolantc DB, Govinc A (2007) Acta Mater 55:3281–3632

    Article  Google Scholar 

  12. Arstila H, Vedel E, Hupa L, Hupa M (2007) J Eur Ceram Soc 27:1543–1546

    Article  CAS  Google Scholar 

  13. Julian JR (2013) Acta Biomater 9:4457–4486

    Article  Google Scholar 

  14. Zaragoza L, Guzmán ER, Gutiérrez LR (2009) J Min Mat Charact Engin 8:591–609

    Google Scholar 

  15. Salman SM, Salama SN, Darwish H, Abo-Mosalam HA (2009) Ceram Int 35:1083–1093

    Article  CAS  Google Scholar 

  16. Chen H, Sun K, Tang Z, Law R V (2006) Cryst Growth Des 6:1504–1508

    Article  CAS  Google Scholar 

  17. Chakradhara RPS, Nagabhushanab BM, Chandrappab GT, Ramesha KP, Raoc JL (2006) Mater Chem Phys 1:95–169

  18. El-Mallawany RA (2012) 2nd edn. CRC Press, Boca Raton

  19. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  20. Tagg SL, Huffman JC, Zwanziger JW, Huffman J, Zwanziger J (1994) Chem Mater 6:1884–1889

    Article  CAS  Google Scholar 

  21. Alias NS, Hussin R, Salim MA (2009) Solid State Sci Technol 17:50–58

    CAS  Google Scholar 

  22. Mahamid J, Sharir A, Addadi L, Weiner S (2008) Proceedings of the National Academy of Sciences, vol 105, pp 12748–12753

  23. Tay FR, Pashley DH, Rueggeberg FA, Loushine RJ (2007) J Endod 33:1347–1351

    Article  Google Scholar 

  24. Liu H, Yazici H, Ergun C, Webster TJ, Bermek H (2008) Acta Biomater 4:1472–1479

    Article  CAS  Google Scholar 

  25. El Damarwi G, Doweidar H, Kamal H (2013) Aust J Basic Appl Sci 7:573–582

    Google Scholar 

  26. Xiang Q, Liu Y, Sheng X, Dan X (2007) Dent Mater 23:251–258

    Article  CAS  Google Scholar 

  27. Zhou H, Lee J (2011) Acta Biomater 7:2769–2781

    Article  CAS  Google Scholar 

  28. Qiu CF, Xiao XF, Liu RF (2008) Mater Sci Technol 24:612–617

    Article  CAS  Google Scholar 

  29. Widanarto W, Sahar MR, Ghoshal SK, Arin R, Rohani MS, Effendi M (2013) Mater Lett 108:289–292

    Article  CAS  Google Scholar 

  30. Crane NJ, Popescu V, Morris MD, Steenhuis P (2006) Bone 39:434–442

    Article  CAS  Google Scholar 

  31. Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Biomaterials 28:4023–4032

    Article  CAS  Google Scholar 

  32. Kannan S, Rocha JHG, Ventura JMG, Lemos AF (2005) Scr Mater 53:1259–1262

    Article  CAS  Google Scholar 

  33. Lu W, Duan W, Guo Y, Ning C (2012) J Biomater Appl 26:637–650

    Article  CAS  Google Scholar 

  34. George J, Kuboki Y, Miyata T (2006) Biotech Bioeng 95:404–411

    Article  CAS  Google Scholar 

  35. Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43:3713–3716

    Article  CAS  Google Scholar 

  36. Wopenka B, Pasteris JD (2005) Mater Sci Eng 25:131–143

    Article  Google Scholar 

  37. Ning CQ, Mehta J, El-Ghannam A (2005) J Mater Sci Mater Med 16:355–60

    Article  CAS  Google Scholar 

  38. Antonakos A, Liarokapis E, Leventouri T (2007) Biomaterials 28:3043–3054

    Article  CAS  Google Scholar 

  39. Hoon J, Kang SH (2002) Water Res 36:3925–4176

    Article  Google Scholar 

  40. Declercq HA, Verbeeck RMH, Ridder LD (2008) Chem Rev 108:4742

    Article  Google Scholar 

  41. LeGeros RZ (2008) Chem Rev 108:4742–4753

    Article  Google Scholar 

  42. Li Y, Li D, Weng W (2008) Int J Appl Ceram Technol 5:442–448

    Article  CAS  Google Scholar 

  43. Nazari AG, Tahari A, Moztarzadeh F, Mozafari M, Bahrololoom ME (2011) Micro Nano Lett 6:713–717

    Article  CAS  Google Scholar 

  44. Zanotto ED (2013) Int J Appl Glas Sci 4:117–124

    Article  CAS  Google Scholar 

  45. Olsztaa MJ, Chenga X, Jeea SS, Kumara R, Kima YY, Kaufmane MJ, Douglasa EP, Gowera LB (2007) vol 58, Mater Sci Eng Rep, pp 77–116

  46. Dumeliea N, Benhayounea H, Richardb D, Maquinb DL, Balossiera G (2008) Mater Charact 59:129–133

    Article  Google Scholar 

  47. Wei M, Ruys AJ, Milthorpe BK, Sorrell CC (2005) Mater Med 16:319–324

    Article  CAS  Google Scholar 

  48. Anastasios MI, Vaimakis TC (2010) J Therm Anal Calorim 99:785–789

    Article  Google Scholar 

  49. Guo X, Xiao P (2006) J Eur Ceram Soc 26:3383–3391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. El-Damrawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Damrawi, G., Doweidar, H. & Kamal, H. Characterization of New Categories of Bioactive Based Tellurite and Silicate Glasses. Silicon 9, 503–509 (2017). https://doi.org/10.1007/s12633-014-9248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9248-5

Keywords

Navigation