Skip to main content
Log in

Micronutrients-incorporated calcium phosphate particles with protective effect on osteoporotic bone tissue

  • Published:
The journal of nutrition, health & aging

Abstract

Background

Supplementation of individual micronutrient is inadequate for maintaining bone function because single micronutrient can not contribute significantly a positive remodeling balance.

Objective

We developed the highly integrated, stably dietary multi-micronutrients with good bioavailability and low adverse effect on the improvement of bone consolidation in osteoporosis.

Methods

The trace element-codoped calcium phosphate (teCaP) particles were prepared in the modified body fluid and carefully evaluated. Rats, aged 3 months, were ovariectomized and when 6 month intervened with the conditioned, low, moderate, and high teCaP diets.

Results

The teCaP particles showed highly dissolvable in stomach juice-mimicing acidic solutions. Three months after intervention, the body weight increase showed remarkable differences among the low teCaP diet (∼52 g), moderate teCaP diet (∼34 g) and high teCaP diet (∼23 g) group. In particular, the intake of moderate teCaP greatly improved the retention of trace elements in femural bone for better protection against the skeletal weakening, and resulted in a significant increase of bone mineral density (104.06%) in comparison with the conventional high calcium plus vitamin D3 diet (Control group).

Conclusions

These investigations improve our understanding of micronutrient retention on bone consolidation in osteoporotic bone tissue, and also provide new mild wet-chemical approach to prepare potent nutritionally effective edible complements to synergistically relieve bone degeneration and prevent osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rolland Y, Abellan van Kan G, Benetos A, Blain H, Bonnefoy M, et al. Frailty, osteoporosis and hip fracture: Causes, consequences and therapeutic perspectives. J Nutri Health Aging. 2008; 12: a319–a330.

    Article  Google Scholar 

  2. Brouns F, Vermeer C. Functional food ingredients for reducing the risks of osteoporosis. Trends food Sci Techn. 2000; 11: 22–33.

    Article  CAS  Google Scholar 

  3. Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, Delmas PD, Meunier PJ. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med. 1992; 327: 1637–1642.

    Article  PubMed  CAS  Google Scholar 

  4. Jackson RD. Calcium plus vitamin D supplementation and the risk of fracture. N Engl J Med. 2006; 354: 669–683.

    Article  PubMed  CAS  Google Scholar 

  5. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, Reid IR. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010; 341: c3691.

    Article  PubMed  Google Scholar 

  6. Meunier, P.J., Roux, C., Seeman, E., The Effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2006; 350: 459–464.

    Article  Google Scholar 

  7. Dorozhkin SV. Calcium orthophosphates in Nature, Biology and Medicine. Materials. 2009; 2: 399–498.

    Article  CAS  Google Scholar 

  8. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature Acta Biomater. 2010; 6: 1882–1894.

    Article  PubMed  CAS  Google Scholar 

  9. Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, Bracci B, Socol G, Fini M, Mihailescu IN, Bigi A. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response. Acta Biomater. 2008; 4: 1885–1893.

    Article  PubMed  CAS  Google Scholar 

  10. Hott M, de Pollak C, Modrowski D, Marie PJ. Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcified Tissue Int. 1993; 53: 174–179.

    Article  CAS  Google Scholar 

  11. Calomme M, Geusens P, Demeester N, Behets GJ, D’Haese P. Sindambiwe JB, van Hoof V, Berghe DV. Partial prevention of long-term femoral bone loss in aged ovariectomized rats supplemented with choline-stabilized orthosilicic acid. Calcif Tissue Int. 2006; 78: 227–232.

    Article  PubMed  CAS  Google Scholar 

  12. Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R. Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res. 2004; 19: 2012–2020.

    Article  PubMed  CAS  Google Scholar 

  13. Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998; 11: 119–135.

    Article  CAS  Google Scholar 

  14. Rodondi A, Ammann P, Ghilardi-Beuret S, Rizzoli R. Zinc increases the effects of essential amino acids-whey protein supplements in frail elderly. J Nutri Health Aging. 2009; 13: 491–497.

    Article  CAS  Google Scholar 

  15. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int. 2003; 72: 32–41.

    Article  PubMed  CAS  Google Scholar 

  16. Prentice A. Diet, nutrition and the prevention of osteoporosis. Public Health Nutr. 2004; 71: 227–243.

    Google Scholar 

  17. Hilty FM, Arnold M, Hilbe M, Teleki A, Knijnenburg JTN, Ehrensperger F, Hurrell RF, Pratsinis SE, Langhans W, Zimmermann MB. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature Nanotechnol. 2010; 5: 374–380.

    Article  CAS  Google Scholar 

  18. Kokubo T, Takadama H. How useful is SBF in predicting in vitro bone bioactivity? Biomaterials. 2006; 27: 2907–2915.

    Article  PubMed  CAS  Google Scholar 

  19. Wang J, Chen X, Yang X, Xu S, Zhang X, Gou Z. A facile pollutant-free approach toward a series of nutritionally effective calcium phosphate nanomaterials for food and drink additives. J Nanopart Res. 2011; 13: 1039–1048.

    Article  CAS  Google Scholar 

  20. Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123: 1939–1951.

    PubMed  CAS  Google Scholar 

  21. Yang X, Gao X, Gan Y, Zhao L, Gao C, Zhang, X, Feng Y, Ting K, Gou Z. Preparation and characterization of trace elements-multidoped injectable biomimetic materials for minimally invasive treatment of osteoporotic bone trauma. J Biomed Mater Res Part A. 2010; 95A: 1170–1181.

    Article  CAS  Google Scholar 

  22. Shenkin A. The key role of micronutrients. Clin Nutr. 2006; 25: 1–13.

    Article  PubMed  CAS  Google Scholar 

  23. Walter Mertz. A balanced approach to nutrition for health: The need for biologically essential minerals and vitamins. J Am Diet Assoc. 1997; 97: S181–S183.

    Article  Google Scholar 

  24. Heaney RP, Recker RR, Watson P, Lappe JM. Phosphate and carbonate salts of calcium support robust bone builiding in osteoporosis. Am J Clin Nutr. 2010; 92: 101–105.

    Article  PubMed  CAS  Google Scholar 

  25. Ekmekcioglu C. The role of trace elements for the health of elderly individuals. Mol Nutr Food Res. 2001; 49: 309–316.

    Google Scholar 

  26. Matsumoto T, Okazaki M, Inoue M, Hamada Y, Taira M, Takahashi J. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials. 2002; 23: 2241–2247.

    Article  PubMed  CAS  Google Scholar 

  27. Hyson D, Studebaker-Hallman D, Davis PA, Gershwin ME. Apple juice consumption reduces plasma low-density lipoprotein oxidation in healthy men and women. J Med Food. 2000; 2: 159–166.

    Article  Google Scholar 

  28. Deyhim F, Mandadi K, Faraji B, Patil BS. Grape fruit juice modulates bone quality in rats. J Med Food. 2008; 11: 99–104.

    Article  PubMed  CAS  Google Scholar 

  29. Freeman BL, Eggett DL, Parker TL. Synergistic and antogonistic interactions of phenolic compounds found in navel oranges. J Food Sci. 2010; 75: C570–576.

    Article  PubMed  CAS  Google Scholar 

  30. Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37oC in synthetic body fluids. Biomaterials. 2000; 21: 1429–1438.

    Article  PubMed  CAS  Google Scholar 

  31. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986; 3: 123–131.

    Article  CAS  Google Scholar 

  32. Maehira F, Miyagi I, Eguchi Y. Effects of calcium sourses and silicates on bone metabolism and the related gene expression in mice. Nutrition. 2009; 25: 581–589.

    Article  PubMed  CAS  Google Scholar 

  33. Davies KM, Heaney RP, Recker RR, Lappe JM, Barger-Lux MJ, Rafferty K, Hinders S. Calcium intake and body weight. J Clin Endocrinol Metab. 2000; 85: 4635–4638.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongru Gou.

Additional information

Co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Zhang, L., Yang, X. et al. Micronutrients-incorporated calcium phosphate particles with protective effect on osteoporotic bone tissue. J Nutr Health Aging 17, 426–433 (2013). https://doi.org/10.1007/s12603-013-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-013-0006-y

Key words

Navigation