Skip to main content
Log in

Phenotypic and Genotypic Characterization of Bacteriocinogenic Enterococci Against Clostridium botulinum

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The present study aimed to characterize Enterococcus faecalis (n = −6) and Enterococcus faecium (n = 1) isolated from healthy chickens to find a novel perspective probiotic candidate that antagonize Clostridium botulinum types A, B, D, and E. The isolated enterococci were characterized based on phenotypic properties, PCR, and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF). The virulence determinants including hemolytic activity on blood agar, gelatinase activity, sensitivity to vancomycin, and presence of gelatinase (gelE) and enterococcal surface protein (esp) virulence genes were investigated. Also, the presence of enterocin structural genes enterocin A, enterocin B, enterocin P, enterocin L50A/B, bacteriocin 31, enterocin AS48, enterocin 1071A/1071B, and enterocin 96 were assessed using PCR. Lastly, the antagonistic effect of the selected Enterococcus spp. on the growth of C. botulinum types A, B, D, and E was studied. The obtained results showed that four out of six E. faecalis and one E. faecium proved to be free from the tested virulence markers. All tested enterococci strains exhibited more than one of the tested enterocin. Interestingly, E. faecalis and E. faecium significantly restrained the growth of C. botulinum types A, B, D, and E. In conclusion, although, the data presented showed that bacteriocinogenic Enterococcus strains lacking of virulence determinants could be potentially used as a probiotic candidate against C. botulinum in vitro; however, further investigations are still urgently required to verify the beneficial effects of the tested Enterococcus spp. in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vine NG, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231:145–152

    Article  CAS  Google Scholar 

  2. Matsuzaki T, Chin J (2000) Modulating immune responses with probiotic bacteria. Immunol Cell Biol 78:67–73

    Article  CAS  Google Scholar 

  3. Klare I, Konstabel C, Badstubner D, Werner G, Witte W (2003) Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88:269–290

    Article  CAS  Google Scholar 

  4. Olawale KO, Fadiora SO, Taiwo SS (2011) Prevalence of hospital-acquired enterococci infections in two primary-care hospitals in osogbo, southwestern Nigeria. Afr J Infect Dis 5:40–46

    Google Scholar 

  5. Andrighetto C, Zampese L, Lombardi A (2001) RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy). Lett Appl Microbiol 33:26–30

    Article  CAS  Google Scholar 

  6. Tanasupawat S, Sukontasing S, Lee JS (2008) Enterococcus thailandicus spp. nov., isolated from fermented sausage (‘mum’) in Thailand. Int J Syst Evol Microbiol 58:1630–1634

    Article  CAS  Google Scholar 

  7. Gomes BC, Esteves CT, Palazzo IC, Darini AL, Felis GE, Sechi LA, Franco BD, De Martinis EC (2008) Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol 25:668–675

    Article  CAS  Google Scholar 

  8. Rossi EA, Vendramine RC, Carlos IZ, Oliveira MG, Valdez GF (2003) Efeito de um novo produto fermentado de soja sobre lípides séricos de homens adultos normocolesterolêmicos. Arch Latin Nutr 53:47–55

    CAS  Google Scholar 

  9. Franz CM, Worobo RW, Quadri LE, Schillinger U, Holzapfel WH, Vederas JC, Stiles ME (1999) Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol 65:2170–2178

    CAS  Google Scholar 

  10. Saarela M, Mogensen G, Fonden R, Matto J, Matilla ST (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    Article  CAS  Google Scholar 

  11. Pollmann M, Nordhoff M, Pospischil A, Tedin K, Wieler LH (2005) Effects of a probiotic strain of Enterococcus faecium on the rate of natural chlamydia infection in swine. Infect Immun 73:4346–4353

    Article  CAS  Google Scholar 

  12. Kuritza LN, Pickler L, Miglino LB, Westphal P, Lourenço MC, Toledo M, et al. (2011) Probióticos a base de Enterococcus faecium NCIMB 10415 no controle da Salmonella Minnesota em frangos de corte. In: XXII Congresso Latino Americano de Aves, Buenos Aires. Argentina 2011.

  13. Sivieri K, Spinardi-Barbisan ALT, Barbisan LF, Bedani R, Pauly ND, Carlos IZ et al (2008) Probiotic Enterococcus faecium CRL 183 inhibit chemically induced colon cancer in male Wistar rats. Eur Food Res Technol 228:231–237

    Article  CAS  Google Scholar 

  14. Allen WD, Linggood MA, Porter P (1996) Enterococcus organisms and their use as probiotics in alleviating irritable bowel syndrome symptoms. European Patent 0508701(B1)

  15. Kruger M, Shehata AA, Schrodl W, Rodloff A (2013) Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe 20:74–78

    Article  Google Scholar 

  16. Kruger M, Neuhaus J, Herrenthey AG, Gokce MM, Schrodl W, Shehata AA (2014) Chronic botulism in a Saxony dairy farm: sources, predisposing factors, development of the disease and treatment possibilities. Anaerobe 28:220–225

    Article  Google Scholar 

  17. Shehata A, Schrodl W, Neuhaus J, Kruger M (2013) Antagonistic effect of different bacteria on Clostridium botulinum types A, B, D and E in vitro. Vet Rec 172:74–78

    Article  Google Scholar 

  18. Heikens E, Singh KV, Jacques-Palaz KD, van Luit-Asbroek M, Oostdijk EA, Bonten MJ, Murray BE, Willems RJ (2011) Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect 13:1185–1190

    Article  CAS  Google Scholar 

  19. Rasmussen M, Johansson D, Sobirk SK, Morgelin M, Shannon O (2010) Clinical isolates of Enterococcus faecalis aggregate human platelets. Microbes Infect 12:295–301

    Article  CAS  Google Scholar 

  20. Tan CK, Lai CC, Wang JY, Lin SH, Liao CH, Huang YT, Wang CY, Lin HI, Hsueh PR (2010) Bacteremia caused by non-faecalis and non-faecium enterococcus species at a Medical center in Taiwan, 2000 to 2008. J Infect 61:34–43

    Article  Google Scholar 

  21. Shankar N, Baghdayan AS, Gilmore MS (2002) Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750

    Article  CAS  Google Scholar 

  22. Chow JW, Kuritza A, Shlaes DM, Green M, Sahm DF, Zervos MJ (1993) Clonal spread of vancomycin-resistant Enterococcus faecium between patients in three hospitals in two states. J Clin Microbiol 31:1609–1611

    CAS  Google Scholar 

  23. Donabedian S, Hershberger E, Thal LA, Chow JW, Clewell DB, Robinson-Dunn B, Zervos MJ (2000) PCR fragment length polymorphism analysis of vancomycin-resistant Enterococcus faecium. J Clin Microbiol 38:2885–2888

    CAS  Google Scholar 

  24. Chow JW, Zervos MJ, Lerner SA, Thal LA, Donabedian SM, Jaworski DD, Tsai S, Shaw KJ, Clewell DB (1997) A novel gentamicin resistance gene in Enterococcus. Antimicrob Agents Chemother 41:511–514

    CAS  Google Scholar 

  25. Kattar MM, Zalloua PA, Araj GF, Samaha-Kfoury J, Shbaklo H, Kanj SS, Khalife S, Deeb M (2007) Development and evaluation of real-time polymerase chain reaction assays on whole blood and paraffin-embedded tissues for rapid diagnosis of human brucellosis. Diagn Microbiol Infect Dis 59:23–32

    Article  CAS  Google Scholar 

  26. Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27

    CAS  Google Scholar 

  27. Cheng S, McCleskey FK, Gress MJ, Petroziello JM, Liu R, Namdari H, Beninga K, Salmen A, DelVecchio VG (1997) A PCR assay for identification of Enterococcus faecium. J Clin Microbiol 35:1248–1250

    CAS  Google Scholar 

  28. Marra A, Dib-Hajj F, Lamb L, Kaczmarek F, Shang W, Beckius G, Milici AJ, Medina I, Gootz TD (2007) Enterococcal virulence determinants may be involved in resistance to clinical therapy. Diagn Microbiol Infect Dis 58:59–65

    Article  CAS  Google Scholar 

  29. Clinical Laboratory Standards Institute (CLSI) (2015) Performance standards for antimicrobial susceptibility testing; Twenty-Fifth Informational Supplement (M100-S25).

  30. Eaton TJ, Gasson MJ (2001) Molecular screening of enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    Article  CAS  Google Scholar 

  31. Yousif NM, Dawyndt P, Abriouel H, Wijaya A, Schillinger U, Vancanneyt M, Swings J, Dirar HA, Holzapfel WH, Franz CM (2005) Molecular characterization, technological properties and safety aspects of enterococci from ‘Hussuwa’, an African fermented sorghum product. J Appl Microbiol 98:216–228

    Article  CAS  Google Scholar 

  32. Ben Belgacema Z, Abriouelb H, Ben Omarb N, Lucasb R, Martínez-Canamerob M, Gálvezb A, Manai M (2010) Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control 21:462–470

    Article  Google Scholar 

  33. Izquierdo E, Wagner C, Marchioni E, Aoude-Werner D, Ennahar S (2009) Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Appl Environ Microbiol 75:4273–4276

    Article  CAS  Google Scholar 

  34. Cancilla MR, Powell IB, Hillier AJ, Davidson BE (1992) Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol 58:1772–1775

    CAS  Google Scholar 

  35. Valenzuela AS, Omar NB, Abriouel H, Lopez RL, Ortega E, Canamero MM, Galvez A (2008) Risk factors in enterococci isolated from foods in Morocco: determination of antimicrobial resistance and incidence of virulence traits. Food Chem Toxicol 46:2648–2652

    Article  Google Scholar 

  36. Dworniczek E, Piwowarczyk J, Bania J, Kowalska-Krochmal B, Walecka E, Seniuk A, Dolna I, Gosciniak G (2012) Enterococcus in wound infections: virulence and antimicrobial resistance. Acta Microbiol Immunol Hung 59:263–269

    Article  CAS  Google Scholar 

  37. Ballering KS, Kristich CJ, Grindle SM, Oromendia A, Beattie DT, Dunny GM (2009) Functional genomics of Enterococcus faecalis: multiple novel genetic determinants for biofilm formation in the core genome. J Bacteriol 191:2806–2814

    Article  CAS  Google Scholar 

  38. Tuncer BO, Zeliha AY, Tuncer Y (2013) Occurrence of enterocin genes, virulence factors, and antibiotic resistance in 3 bacteriocin-producer Enterococcus faecium strains isolated from Turkish tulum cheese. Turk J Biol 37:443–449

    Article  Google Scholar 

  39. Biswas PP, Dey S, Sen A, Adhikari L (2016) Molecular characterization of virulence genes in vancomycin-resistant and vancomycin-sensitive enterococci. J Glob Infect Dis 8:16–24

    Article  CAS  Google Scholar 

  40. Trajkovska-Dokic E, Kaftandzieva A, Stojkovska S, Kuzmanovska A, Panovski N (2016) Gastrointestinal colonization with vancomycin-resistant enterococci in hospitalized and outpatients. J Glob Infect Dis 8:16–24

    Article  Google Scholar 

  41. Guinane CM, Lawton EM, O’Connor PM, O’Sullivan O, Hill C, Ross RP, Cotter PD (2016) The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe:4041–4049

  42. Grosu-Tudor SS, Stancu MM, Pelinescu D, Zamfir M (2014) Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods. World J Microbiol Biotechnol 30:2459–2469

    Article  CAS  Google Scholar 

  43. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernandez PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294

    Article  CAS  Google Scholar 

  44. Kruger M, Skau M, Shehata AA, Schrodl W (2013) Efficacy of Clostridium botulinum types C and D toxoid vaccination in Danish cows. Anaerobe 23:97–101

    Article  Google Scholar 

  45. Sullivan NM, Mills DC, Riepmann HP, Arnon SS (1988) Inhibition of growth of Clostridium botulinum by intestinal microflora isolated from healthy infants. Microb Ecol Health Dis:1179–1192

Download references

Acknowledgements

This project was supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No. 9222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awad A Shehata.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, A.A., Tarabees, R., Basiouni, S. et al. Phenotypic and Genotypic Characterization of Bacteriocinogenic Enterococci Against Clostridium botulinum . Probiotics & Antimicro. Prot. 9, 182–188 (2017). https://doi.org/10.1007/s12602-016-9240-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-016-9240-z

Keywords

Navigation