Skip to main content

Advertisement

Log in

In Vitro Comparison of the Effects of Probiotic, Commensal and Pathogenic Strains on Macrophage Polarization

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Macrophages are important with respect to both innate and adaptive immune responses and are known to differentiate into pro-inflammatory M1- or anti-inflammatory M2-phenotypes following activation. In order to study how different bacteria affect macrophage polarization, we exposed murine RAW 264.7 macrophages to sixteen different strains representing probiotic strains, pathogens, commensals and strains of food origin. Increased inducible nitric oxide synthase (iNOS) or arginase-1 gene expression indicates M1 or M2 polarization, respectively, and was quantified by qRT-PCR. Strains of Escherichia and Salmonella elevated iNOS expression more so than strains of Enterococcus, Lactobacillus and Lactococcus, indicating that Gram-negative strains are more potent M1 inducers. However, strain-specific responses were observed. For instance, Escherichia coli Nissle 1917 was a poor inducer of iNOS gene expression compared to the other E. coli strains, while Enterococcus faecalis Symbioflor-1 was more potent in this respect compared to all the eleven Gram-positive strains tested. Macrophage polarization was further characterized by quantifying secreted pro- and anti-inflammatory cytokines. Exposure to the pathogen E. coli 042 produced a cytokine profile indicating M1 differentiation, which is in accordance with the PCR data. However, exposure to most strains resulted in either high or low secretion levels of all cytokines tested, rather than a clear M1 or M2 profile. In general, the Gram-negative strains induced high levels of cytokine secretion compared to the Gram-positive strains. Interestingly, strains of human origin had a higher impact on macrophages compared to strains of food origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guillemard E, Tondu F, Lacoin F, Schrezenmeir J (2010) Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr 103(1):58–68. doi:10.1017/S0007114509991395

    Article  CAS  Google Scholar 

  2. Matthes H, Krummenerl T, Giensch M, Wolff C, Schulze J (2010) Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN). BMC Complement Altern Med 10:13. doi:10.1186/1472-6882-10-13

    Article  Google Scholar 

  3. Remus DM, Kleerebezem M, Bron PA (2011) An intimate tete-a-tete—how probiotic lactobacilli communicate with the host. Eur J Pharmacol 668(Suppl 1):S33–S42. doi:10.1016/j.ejphar.2011.07.012

    Article  CAS  Google Scholar 

  4. Sleator RD, Hill C (2008) New frontiers in probiotic research. Lett Appl Microbiol 46(2):143–147. doi:10.1111/j.1472-765X.2007.02293.x

    Article  CAS  Google Scholar 

  5. Ritchie ML, Romanuk TN (2012) A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS ONE 7(4):e34938. doi:10.1371/journal.pone.0034938

    Article  CAS  Google Scholar 

  6. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84(5):759–768

    Article  CAS  Google Scholar 

  7. Faye T, Tamburello A, Vegarud GE, Skeie S (2012) Survival of lactic acid bacteria from fermented milks in an in vitro digestion model exploiting sequential incubation in human gastric and duodenum juice. J Dairy Sci 95(2):558–566

    Article  CAS  Google Scholar 

  8. Jensen H, Grimmer S, Naterstad K, Axelsson L (2012) In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol 153(1–2):216–222. doi:10.1016/j.ijfoodmicro.2011.11.020

    Article  Google Scholar 

  9. Gaudana SB, Dhanani AS, Bagchi T (2010) Probiotic attributes of Lactobacillus strains isolated from food and of human origin. Br J Nutr 103(11):1620–1628. doi:10.1017/S0007114509993643

    Article  CAS  Google Scholar 

  10. Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91(3):253–260. doi:10.1016/j.ijfoodmicro.2003.07.001

    Article  Google Scholar 

  11. Li XJ, Yue LY, Guan XF, Qiao SY (2008) The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol 104(4):1082–1091. doi:10.1111/j.1365-2672.2007.03636.x

    Article  CAS  Google Scholar 

  12. Fitzpatrick LR, Small J, Hoerr RA, Bostwick EF, Maines L, Koltun WA (2008) In vitro and in vivo effects of the probiotic Escherichia coli strain M-17: immunomodulation and attenuation of murine colitis. Br J Nutr 100(3):530–541. doi:10.1017/S0007114508930373

    Article  CAS  Google Scholar 

  13. Mileti E, Matteoli G, Iliev ID, Rescigno M (2009) Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE 4(9):e7056. doi:10.1371/journal.pone.0007056

    Article  Google Scholar 

  14. Dong H, Rowland I, Yaqoob P (2012) Comparative effects of six probiotic strains on immune function in vitro. Br J Nutr 108(3):459–470. doi:10.1017/S0007114511005824

    Article  CAS  Google Scholar 

  15. Shida K, Nanno M, Nagata S (2011) Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities. Gut Microbes 2(2):109–114

    Article  Google Scholar 

  16. Hume DA (2008) Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol 1(6):432–441. doi:10.1038/mi.2008.36

    Article  CAS  Google Scholar 

  17. Mowat AM, Bain CC (2011) Mucosal macrophages in intestinal homeostasis and inflammation. J Innate Immun 3(6):550–564. doi:10.1159/000329099

    Article  Google Scholar 

  18. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761

    Article  CAS  Google Scholar 

  19. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    CAS  Google Scholar 

  20. Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. Sci World J 11:12. doi:10.1100/2011/213962

    Article  Google Scholar 

  21. MacMicking J, Xie Q-W, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15(1):323–350. doi:10.1146/annurev.immunol.15.1.323

    Article  CAS  Google Scholar 

  22. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    CAS  Google Scholar 

  23. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146

    Article  CAS  Google Scholar 

  24. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292. doi:10.1084/jem.176.1.287

    Article  CAS  Google Scholar 

  25. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555. doi:10.1016/s1471-4906(02)02302-5

    Article  CAS  Google Scholar 

  26. Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, Faas MM, de Vos P (2012) L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase Treg frequencies in healthy mice in a strain dependent manner. PLoS ONE 7(10):e47244. doi:10.1371/journal.pone.0047244

    Article  CAS  Google Scholar 

  27. Cross ML, Ganner A, Teilab D, Fray LM (2004) Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunol Med Microbiol 42(2):173–180. doi:10.1016/j.femsim.2004.04.001

    Article  CAS  Google Scholar 

  28. Habil N, Al-Murrani W, Beal J, Foey AD (2011) Probiotic bacterial strains differentially modulate macrophage cytokine production in a strain-dependent and cell subset-specific manner. Benef Microbes 2(4):283–293. doi:10.3920/BM2011.0027

    Article  CAS  Google Scholar 

  29. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K (1995) Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 25(4):1101–1104. doi:10.1002/eji.1830250436

    Article  CAS  Google Scholar 

  30. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349

    CAS  Google Scholar 

  31. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. doi:10.1523/jneurosci.3257-09.2009

    Article  CAS  Google Scholar 

  32. Chaudhuri RR, Sebaihia M, Hobman JL, Webber MA, Leyton DL, Goldberg MD, Cunningham AF, Scott-Tucker A, Ferguson PR, Thomas CM, Frankel G, Tang CM, Dudley EG, Roberts IS, Rasko DA, Pallen MJ, Parkhill J, Nataro JP, Thomson NR, Henderson IR (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS ONE 5(1):e8801. doi:10.1371/journal.pone.0008801

    Article  Google Scholar 

  33. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR, Harris D, Asadulghani M, Kurokawa K, Dean P, Kenny B, Quail MA, Thurston S, Dougan G, Hayashi T, Parkhill J, Frankel G (2009) Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 191(1):347–354. doi:10.1128/JB.01238-08

    Article  CAS  Google Scholar 

  34. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  Google Scholar 

  35. Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Dobrindt U (2004) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 186(16):5432–5441. doi:10.1128/JB.186.16.5432-5441.2004

    Article  CAS  Google Scholar 

  36. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Google Scholar 

  37. Domann E, Hain T, Ghai R, Billion A, Kuenne C, Zimmermann K, Chakraborty T (2007) Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol 297(7–8):533–539. doi:10.1016/j.ijmm.2007.02.008

    Article  CAS  Google Scholar 

  38. Brede DA, Snipen LG, Ussery DW, Nederbragt AJ, Nes IF (2011) Complete genome sequence of the commensal Enterococcus faecalis 62, isolated from a healthy Norwegian infant. J Bacteriol 193(9):2377–2378. doi:10.1128/JB.00183-11

    Article  CAS  Google Scholar 

  39. Morita H, Toh H, Oshima K, Murakami M, Taylor TD, Igimi S, Hattori M (2009) Complete genome sequence of the probiotic Lactobacillus rhamnosus ATCC 53103. J Bacteriol 191(24):7630–7631. doi:10.1128/JB.01287-09

    Article  CAS  Google Scholar 

  40. Moe KM, Porcellato D, Skeie S (2013) Metabolism of milk fat globule membrane components by nonstarter lactic acid bacteria isolated from cheese. J Dairy Sci 96(2):727–739. doi:10.3168/jds.2012-5497

    Article  CAS  Google Scholar 

  41. Kroger C, Dillon SC, Cameron AD, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hebrard M, Handler K, Colgan A, Leekitcharoenphon P, Langridge GC, Lohan AJ, Loftus B, Lucchini S, Ussery DW, Dorman CJ, Thomson NR, Vogel J, Hinton JC (2012) The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci USA 109(20):E1277–E1286. doi:10.1073/pnas.1201061109

    Article  CAS  Google Scholar 

  42. Porcellato D, Ostlie HM, Liland KH, Rudi K, Isaksson T, Skeie SB (2012) Strain-level characterization of nonstarter lactic acid bacteria in Norvegia cheese by high-resolution melt analysis. J Dairy Sci 95(9):4804–4812. doi:10.3168/jds.2012-5386

    Article  CAS  Google Scholar 

  43. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100(4):1990–1995. doi:10.1073/pnas.0337704100

    Article  CAS  Google Scholar 

  44. van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM, de Groot PJ, Hooiveld GJ, Brummer RJ, Kleerebezem M (2009) Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci USA 106(7):2371–2376. doi:10.1073/pnas.0809919106

    Article  Google Scholar 

  45. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ, Wells JM (2010) Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 298(6):G851–G859. doi:10.1152/ajpgi.00327.2009

    Article  CAS  Google Scholar 

  46. Hojsak I, Abdovic S, Szajewska H, Milosevic M, Krznaric Z, Kolacek S (2010) Lactobacillus GG in the prevention of nosocomial gastrointestinal and respiratory tract infections. Pediatrics 125(5):e1171–e1177. doi:10.1542/peds.2009-2568

    Article  Google Scholar 

  47. Habermann W, Zimmermann K, Skarabis H, Kunze R, Rusch V (2002) Reduction of acute recurrence in patients with chronic recurrent hypertrophic sinusitis by treatment with a bacterial immunostimulant (Enterococcus faecalis Bacteriae of human origin. Arzneimittelforschung 52(8):622–627

    CAS  Google Scholar 

  48. Habermann W, Zimmermann K, Skarabis H, Kunze R, Rusch V (2001) The effect of a bacterial immunostimulant (human Enterococcus faecalis bacteria) on the occurrence of relapse in patients with. Arzneimittelforschung 51(11):931–937

    CAS  Google Scholar 

  49. Christensen HR, Frokiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168(1):171–178

    CAS  Google Scholar 

  50. Snel J, Vissers YM, Smit BA, Jongen JM, van der Meulen ET, Zwijsen R, Ruinemans-Koerts J, Jansen AP, Kleerebezem M, Savelkoul HF (2011) Strain-specific immunomodulatory effects of Lactobacillus plantarum strains on birch-pollen-allergic subjects out of season. Clin Exp Allergy 41(2):232–242. doi:10.1111/j.1365-2222.2010.03650.x

    Article  CAS  Google Scholar 

  51. Ligaarden SC, Axelsson L, Naterstad K, Lydersen S, Farup PG (2010) A candidate probiotic with unfavourable effects in subjects with irritable bowel syndrome: a randomised controlled trial. BMC Gastroenterol 10:16. doi:10.1186/1471-230X-10-16

    Article  Google Scholar 

  52. Christoffersen TE, Jensen H, Kleiveland CR, Dorum G, Jacobsen M, Lea T (2012) In vitro comparison of commensal, probiotic and pathogenic strains of Enterococcus faecalis. Br J Nutr 1–11. doi:10.1017/S0007114512000220

  53. Comstock LE, Kasper DL (2006) Bacterial glycans: key mediators of diverse host immune responses. Cell 126(5):847–850. doi:10.1016/j.cell.2006.08.021

    Article  CAS  Google Scholar 

  54. Kitazawa H, Nomura M, Itoh T, Yamaguchi T (1991) Functional alteration of macrophages by a slime-forming Lactococcus lactis ssp. cremoris. J Dairy Sci 74(7):2082–2088. doi:10.3168/jds.S0022-0302(91)78380-X

    Article  CAS  Google Scholar 

  55. Kitazawa H, Yamaguchi T, Miura M, Saito T, Itoh T (1993) B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili. J Dairy Sci 76(6):1514–1519. doi:10.3168/jds.S0022-0302(93)77483-4

    Article  CAS  Google Scholar 

  56. FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina

  57. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(2 Suppl):386S–392S

    CAS  Google Scholar 

  58. Hairul Islam VI, Prakash Babu N, Pandikumar A, Ignacimuthu S (2011) Isolation and characterization of putative probiotic bacterial strain, Bacillus amyloliquefaciens, from North East Himalayan soil based on in vitro and in vivo functional properties. Probiotics Antimicrob Proteins 3(3–4):175–185. doi:10.1007/s12602-011-9081-8

    Article  CAS  Google Scholar 

  59. Kleiveland CR, Hult LT, Spetalen S, Kaldhusdal M, Christofferesen TE, Bengtsson O, Romarheim OH, Jacobsen M, Lea T (2012) The non-commensal bacteria Methylococcus capsulatus (Bath) ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis by influencing mechanisms essential for maintenance of barrier function. Appl Environ Microbiol. doi:10.1128/AEM.02464-12

    Google Scholar 

  60. Liang MD, Bagchi A, Warren HS, Tehan MM, Trigilio JA, Beasley-Topliffe LK, Tesini BL, Lazzaroni JC, Fenton MJ, Hellman J (2005) Bacterial peptidoglycan-associated lipoprotein: a naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J Infect Dis 191(6):939–948. doi:10.1086/427815

    Article  CAS  Google Scholar 

  61. Rhee SH, Hwang D (2000) Murine TOLL-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J Biol Chem 275(44):34035–34040. doi:10.1074/jbc.M007386200

    Article  CAS  Google Scholar 

  62. Hessle C, Andersson B, Wold AE (2000) Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect Immun 68(6):3581–3586

    Article  CAS  Google Scholar 

  63. Hessle CC, Andersson B, Wold AE (2005) Gram-positive and gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine 30(6):311–318. doi:10.1016/j.cyto.2004.05.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ostfold Hospital Trust. Post-doctor Alasdair Mckenzie was most helpful in reviewing the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Eker Christoffersen.

Additional information

Trine Eker Christoffersen and Lene Therese Olsen Hult have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christoffersen, T.E., Hult, L.T.O., Kuczkowska, K. et al. In Vitro Comparison of the Effects of Probiotic, Commensal and Pathogenic Strains on Macrophage Polarization. Probiotics & Antimicro. Prot. 6, 1–10 (2014). https://doi.org/10.1007/s12602-013-9152-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9152-0

Keywords

Navigation