Skip to main content
Log in

A novel insight into enhanced propane combustion performance on PtUSY catalyst

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Platinum was supported on γ-Al2O3 and ultra-stable Y zeolite (USY) by an incipient wetness impregnation method. The catalysts were characterized by nitrogen physisorption, transmission electron microscopy (TEM), CO/C3H8 isothermal oxidations, NH3 temperature-programmed desorption (NH3–TPD) and infrared (IR) spectroscopy of adsorbed probe molecules (CO, C3H8 and C3H8 + O2). Compared with Pt/Al2O3, PtUSY catalyst shows obviously higher activity for the combustion of propane. After estimating the size effect of Pt particles and propane adsorption capacity of USY, the excellent activity of PtUSY is also attributed to the strong interactions between the precious metal and the acidic zeolite. It inhibits the oxidation of Pt in an oxygen-rich atmosphere at high temperatures, which facilitate the initial oxidation step involving the C–H bond activation on metallic Pt as reflected by in situ diffuse reflectance infrared Fourier-transformed (DRIFT) spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu ZG, Berg DR, Vasys VN, Dettmann ME, Zielinska B, Schauer JJ. Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines. Atmos Environ. 2010;44(7):1108.

    Google Scholar 

  2. Gandhi HS, Graham GW, McCabe RW. Automotive exhaust catalysis. J Catal. 2003;216(1–2):433.

    Article  Google Scholar 

  3. Galisteo FC, Mariscal R, Granados ML, Fierro JLG, Daley RA, Anderson JA. Reactivation of sintered Pt/Al2O3 oxidation catalysts. Appl Catal B Environ. 2005;59(3–4):227.

    Article  Google Scholar 

  4. Morikawaa A, Okumura K, Ishii M, Kikuta K, Suda A, Shinjo H. Characterization of termetallic Pt–Ir–Au catalysts for NO decomposition. Rare Met. 2011;30(1):53.

    Article  Google Scholar 

  5. Burch R, Halpin E, Hayes M, Ruth K, Sullivan JA. The nature of activity enhancement for propane oxidation over supported Pt catalysts exposed to sulphur dioxide. Appl Catal B Environ. 1998;19(3–4):199.

    Article  Google Scholar 

  6. Xie J, Li X, Yu Z, Zhang L, Li F, Xia D. Synthesis and study of λ-MnO2 supported Pt nanocatalyst for methanol electro-oxidation. Rare Met. 2010;29(2):187.

    Article  Google Scholar 

  7. Hinz A, Skoglundh M, Fridell E, Andersson A. An investigation of the reaction mechanism for the promotion of propane oxidation over Pt/Al2O3 by SO2. J Catal. 2001;201(2):247.

    Article  Google Scholar 

  8. Corro G, Fierro JLG, Odilon VC. An XPS evidence of Pt4+ present on sulfated Pt/Al2O3 and its effect on propane combustion. Catal Commun. 2003;4(8):371.

    Article  Google Scholar 

  9. Yasawa Y, Yoshida H, Komai S, Hattori T. The additive effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the electronegativity of additives. Appl Catal A Gen. 2002;233(1–2):113.

    Article  Google Scholar 

  10. Wu X, Zhang L, Weng D, Liu S, Si Z, Fan J. Total oxidation of propane on Pt/WO x /Al2O3 catalysts by formation of metastable Ptδ+ species interacted with WO x clusters. J Hazard Mater. 2012;225–226:146.

    Article  Google Scholar 

  11. Van Santen RA. Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res. 2009;42(1):57.

    Article  Google Scholar 

  12. Santra AK, Goodman DW. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures. Electrochim Acta. 2002;47(22–23):3595.

    Article  Google Scholar 

  13. Garetto TF, Apesteguia CR. Structure sensitivity and in situ activation of benzene combustion on Pt/Al2O3 catalysts. Appl Catal B Environ. 2001;32(1–2):83.

    Article  Google Scholar 

  14. Beck IE, Bukhtiyarov V, Pakharukov IY, Zaikovsky V, Kriventsov V, Parmon V. Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation. J Catal. 2009;268(1):60.

    Article  Google Scholar 

  15. GololobovI AM, Bekk E, Bragina GO, Zaikovskii VI, Ayupov AB, Telegina NS, Bukhtiyarov VI, Stakheev AYu. Platinum nanoparticle size effect on specific catalytic activity in n-alkane deep oxidation: dependence on the chain length of the Paraffin. Kinet Catal. 2009;50(6):830.

    Article  Google Scholar 

  16. Kim J, Kim W, Seo Y, Kim J, Ryoo R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: effects of zeolite crystal thickness and platinum location. J Catal. 2013;301:187.

    Article  Google Scholar 

  17. Pinard L, Mijoin J, Magnoux P, Guisnet M. Oxidation of chlorinated hydrocarbons over Pt zeolite catalysts 1-mechanism of dichloromethane transformation over PtNaY catalysts. J Catal. 2003;215(2):234.

    Article  Google Scholar 

  18. Tsou J, Magnoux P, Guisnet M, Orfao JJM, Figueiredo JL. Catalytic oxidation of volatile organic compounds-oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl Catal B Environ. 2005;57(2):117.

    Article  Google Scholar 

  19. Ribeiro F, Silva JM, Silva E, FátimaVaz M, Oliveira FAC. Catalytic combustion of toluene on Pt zeolite coated cordierite foams. Catal Today. 2011;176(1):93.

    Article  Google Scholar 

  20. Garetto TF, Rincón E, Apesteguía CR. The origin of the enhanced activity of Pt/zeolites for combustion of C2–C4 alkanes. Appl Catal B Environ. 2007;73(1–2):65.

    Article  Google Scholar 

  21. Garetto TF, Rincón E, Apesteguía CR. Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Appl Catal B Environ. 2004;48(3):167.

    Article  Google Scholar 

  22. Liu S, Wu XD, Weng D, Li M, Fan J. Sulfation of Pt/Al2O3 catalyst for soot oxidation: high utilization of NO2 and oxidation of surface oxygenated complexes. Appl Catal B Environ. 2013;138–139:199.

    Article  Google Scholar 

  23. Liu S, Wu XD, Weng D, Li M, Ran R. Roles of acid sites on Pt/H-ZSM5 catalyst in catalytic oxidation of diesel soot. ACS Catal. 2015;5(2):909.

    Article  Google Scholar 

  24. Aranzabal A, González-Marcos JA, Romero-Sáez M, González-Velasco JR, Guillemot M, Magnoux P. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Appl Catal B Environ. 2009;88(3–4):533.

    Article  Google Scholar 

  25. Jin HL, Ansari MB, Jeong E, Park S. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. J Catal. 2012;291:55.

    Article  Google Scholar 

  26. Subbotina IR, Shelimov BN, Kazanskii VB. IR spectroscopic study of alkane interaction with the Brønsted acid sites of hydrogen-exchanged zeolites. Kinet Catal. 2002;43(3):412.

    Article  Google Scholar 

  27. Carlsson P, Mollner S, Arnby K, Skoglundh M. Effect of periodic operation on the low-temperature activity for propane oxidation over Pt/Al2O3 catalysts. Chem Eng Sci. 2004;59(20):4313.

    Article  Google Scholar 

  28. Kazansky VB, Subbotina IR, Jentoft FC, Schlögl R. Intensities of C–H IR stretching bands of ethane and propane adsorbed by zeolites as a new spectral criterion of their chemical activation via polarization resulting from stretching of chemical bonds. J Phys Chem B. 2006;110(35):17468.

    Article  Google Scholar 

  29. Rebrov EV, Simakov AV, Sazonova NN, Rogov VA, Barannik GB. Propane and oxygen action on NO x ad-species on low-exchanged Cu–ZSM-5. Catal Lett. 1998;51(1–2):27.

    Article  Google Scholar 

  30. Wesson PJ, Snurr RQ. Modified temperature programmed desorption evaluation of hydrocarbon trapping by CsMOR zeolite under cold start conditions. Mesopor Mater. 2009;125(1–2):35.

    Article  Google Scholar 

  31. Bond GC. Metal-support and metal-additive effect in catalysis. Platin Met Rev. 1983;21(1):16.

    Google Scholar 

  32. Ishihara T, Harada K, Eguchi K, Arai H. Electronic interaction between the support and ruthenium catalysts for the hydrogenation of carbon-monoxide. J Catal. 1992;136(1):161.

    Article  Google Scholar 

  33. Solymosi F, Pasztor M, Rakhely G. Infrared studies of the effects of promoters on CO-induced structural changes in Rh. J Catal. 1988;110(2):413.

    Article  Google Scholar 

  34. Holmgren A, Andersson B, Duprez D. Interactions of CO with Pt/ceria catalysts. Appl Catal B Environ. 1999;22(3):215.

    Article  Google Scholar 

  35. Bazin P, Saur O, Lavalley JC, Daturi M, Blanchard G. FT-IR study of CO adsorption on Pt/CeO2: characterization and structural rearrangement of small Pt particles. Phys Chem Chem Phys. 2005;7(1):187.

    Article  Google Scholar 

  36. Montanaria T, Matarrese R, Artioli N, Busca G. FT-IR study of the surface redox states on platinum-potassium-alumina catalysts. Appl Catal B Environ. 2011;105(1–2):15.

    Article  Google Scholar 

  37. Zhang L, Weng D, Wang B, Wu XD. Effects of sulfation on the activity of Ce0.67Zr0.33O2 supported Pt catalyst for propane oxidation. Catal Commun. 2010;11(15):1229.

    Article  Google Scholar 

  38. Yoshida H, Tsuruta T, Yazawa Y, Hattori T. Support effect on oxidation resistance of precious metal catalysts as examined by N2O decomposition. Appl Catal A Gen. 2007;325(1):50.

    Article  Google Scholar 

  39. Yasawa Y, Yoshida H, Hattori T. The support effect on platinum catalyst under oxidizing atmosphere: improvement in the oxidation-resistance of platinum by the electrophilic property of support materials. Appl Catal A Gen. 2002;237(1–2):139.

    Article  Google Scholar 

  40. Yasawa Y, Yoshida H, Takagi N, Komai S, Satsuma A, Hattori T. Acid strength of support materials as a factor controlling oxidation state of palladium catalyst for propane combustion. J Catal. 1999;187(1):15.

    Article  Google Scholar 

  41. Hasan MA, Zaki MI, Pasupulety L. IR investigation of the oxidation of propane and likely C3 and C2 products over group IVB metal oxide Catalysts. J Phys Chem B. 2002;106(49):12747.

    Article  Google Scholar 

  42. Panagiotopoulou P, Verykios XE. Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts. Int J Hydrogen Energy. 2012;37(21):16333.

    Article  Google Scholar 

  43. Martinez-Ramirez Z, Gonzalez-Calderon JA, Almendarez-Camarillo A, Fierro-Gonzalez JC. Adsorption and dehydrogenation of 2-propanol on the surface of γ-Al2O3-supported gold. Surf Sci. 2012;606(15–16):1167.

    Article  Google Scholar 

  44. Moreno-Gonzáleza M, Blascoa T, Góra-Marek K, Palomaresa AE, Corma A. Study of propane oxidation on Cu-zeolite catalysts by in situ EPR and IR spectroscopies. Catal Today. 2014;227:123.

    Article  Google Scholar 

  45. Chin YH, Buda C, Neurock M, Iglesia E. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4–O2 catalysis on supported Pt clusters. J Am Chem Soc. 2011;133(40):15958.

    Article  Google Scholar 

  46. Wei JM, Iglesia E. Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts. J Phys Chem B. 2004;108(22):4094.

    Article  Google Scholar 

  47. Weng X, Ren H, Chen M, Wan H. Effect of surface oxygen on the activation of methane on palladium and platinum surfaces. ACS Catal. 2014;4(8):2598.

    Article  Google Scholar 

  48. Burch R, Hayes MJ. C–H bond activation in hydrocarbon oxidation on solid catalysts. J Mol Catal A. 1995;100(1–3):13.

    Article  Google Scholar 

  49. Solsona B, García T, Hutchings GJ, Taylor SH, Makkee M. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Appl. Catal A Gen. 2009;365(2):222.

    Article  Google Scholar 

  50. Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA. On highly active partially oxidized platinum in carbon monoxide oxidation over supported platinum catalysts. J Catal. 2009;263(2):228.

    Article  Google Scholar 

  51. Ono LK, Croy JR, Heinrich H, Cuenya BR. Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si(001): size effects. J Phys Chem C. 2011;115(34):16856.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Technology of China (No. 2013AA061902) and the Ministry of Education of China (No. 113007A). Moreover, we would also thank the financial support from the State Key Laboratory of New Ceramics and Fine Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Wu, XD., Weng, D. et al. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 36, 1–9 (2017). https://doi.org/10.1007/s12598-016-0760-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0760-1

Keywords

Navigation