Skip to main content
Log in

A new approach to zinc–nickel separation using solution alkalinization method: application to a zinc plant residue

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The present investigation involves the separation of zinc and nickel from a sulfate solution using the acidic leaching of zinc plant residue after cadmium removal step as precursor (42.88 wt% Zn, 8.50 wt% Cd and 2.33 wt% Ni). Separation of nickel from the solution was done by pouring it into a strong alkaline sodium hydroxide solution due to precipitation of nickel hydroxide and conversion of zinc to the soluble \({\text{Zn}}({\text{OH}})_{4}^{2 - }\) complex. Higher degrees of separation were reached by pouring more diluted solutions into the stronger alkaline media. To clear pursue of the process, design of experimental methodology was applied for experiments. Scrutinizing different washing steps on nickel-rich precipitates shows that the washing process decreases zinc content and thereby increases overall selectivity coefficient. Outcomes show that, at the optimized condition, Ni/Zn weight ratio in the solid product becomes about 104 times higher than the initial ratio in the initial feed solution and a nickel concentrate with 29.98 wt% Ni and 5.99 wt% Zn is achieved. At the same time, the chemical analysis of filtrate shows only 4.4 mg·L−1 Ni in the alkaline zinc solution, which means that over 99 % nickel is recovered. The study on changes of zinc concentration with time shows that the process could be completed only after few minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuchar D, Fukuta T, Kubuta M, Matsudaet H. Recovery of Cu, Zn, Ni and Cr from plating sludge by combined sulfidation and oxidation treatment. Int J Civil Environ Eng. 2010;2(2):62.

    Google Scholar 

  2. Park YJ, Fray DJ. Separation of zinc and nickel ions in a strong acid through liquid-liquid extraction. J Hazard Mater. 2009;163(1):259.

    Article  CAS  Google Scholar 

  3. Safarzadeh MS, Moradkhani D, Ashtari P. Recovery of zinc from Cd–Ni zinc plant residues. Hydrometallurgy. 2009;97(1–2):67.

    Article  CAS  Google Scholar 

  4. Machado MD, Soares EV, Soares HMVM. Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents. J Hazard Mater. 2010;184(1–3):357.

    Article  CAS  Google Scholar 

  5. Liao J, Hu H, Fu W, Li S, Chen Q. A hydrometallurgical route to produce ZnO nanoparticles and NiO strips from the spent Ni/ZnO catalyst. Hydrometallurgy. 2012;121–124:107.

    Article  Google Scholar 

  6. Moradkhani D, Rasouli M, Behnian D, Arjmandfar H, Ashtari P. Selective zinc alkaline leaching optimization and cadmium sponge recovery by electrowinning from cold filter cake (CFC) residue. Hydrometallurgy. 2012;115–116:84.

    Article  Google Scholar 

  7. Dutra AJB, Paiva PRP, Tavares LM. Alkaline leaching of zinc from electric arc furnace steel dust. Miner Eng. 2006;19(5):478.

    Article  CAS  Google Scholar 

  8. Safarzadeh MS, Moradkhani D, Ojaghi-Ilkhchi M. Kinetics of sulfuric acid leaching of cadmium from Cd–Ni zinc plant residues. J Hazard Mater. 2009;163(2–3):880.

    Article  CAS  Google Scholar 

  9. Safarzadeh MS, Moradkhani D, Ojaghi-Ilkhchi M, Hamedani Golshan N. Determination of the optimum conditions for the leaching of Cd–Ni residues from electrolytic zinc plant using statistical design of experiments. Sep Purif Technol. 2008;58(3):367.

    Article  CAS  Google Scholar 

  10. Safarzadeh MS, Moradkhani D, Ilkhchi MO. Determination of the optimum conditions for the cementation of cadmium with zinc powder in sulfate medium. Chem Eng Process. 2007;46(12):1332.

    Article  CAS  Google Scholar 

  11. Reddy BR, Priya DN. Process development for the separation of copper(II), nickel(II) and zinc(II) from sulphate solutions by solvent extraction using LIX 84 I. Sep Purif Technol. 2005;45(2):163.

    Article  CAS  Google Scholar 

  12. Zhang X, Li X, Cao H, Zhang Y. Separation of copper, iron(III), zinc and nickel from nitrate solution by solvent extraction using LK-C2. Sep Purif Technol. 2010;70(3):306.

    Article  CAS  Google Scholar 

  13. Balesini AA, Zakeri A, Razavizadeh H, Khani A. Nickel solvent extraction from cold purification filter cakes of Angouran mine concentrate using LIX984N. Int J Miner Metal Mater. 2013;20(11):1029.

    Article  CAS  Google Scholar 

  14. Innocenzi V, Veglio F. Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction. Hydrometallurgy. 2012;129–130:50.

    Article  Google Scholar 

  15. Boyanov BS, Konareva VV, Kolev NK. Purification of zinc sulfate solutions from cobalt and nickel through activated cementation. Hydrometallurgy. 2004;73(1–2):163.

    Article  CAS  Google Scholar 

  16. Boyanov BS, Konareva VV, Kolev NK. Removal of cobalt and nickel from zinc sulphate solutions using activated cementation. J Min Metal B. 2004;40(1):41.

    Article  CAS  Google Scholar 

  17. Moghaddam J, Sarraf-Mamoory R, Abdollahy M, Yamini Y. Purification of zinc ammoniacal leaching solution by cementation: determination of optimum process conditions with experimental design by Taguchi’s method. Sep Purif Technol. 2006;51(2):157.

    Article  CAS  Google Scholar 

  18. Abdel Rahman HH, Abdel Wahed EM. Removal of nickel ions by cementation on zinc from NiSO4 solution in presence of accelerator non-toxic organic compounds. Hydrometallurgy. 2012;129–130:111.

    Article  Google Scholar 

  19. Sampaio RMM, Timmers RA, Kocks N, André V, Duarte MT, Van Hullebusch ED, Farges F, Lens PNL. Zn–Ni sulfide selective precipitation: the role of supersaturation. Sep Purif Technol. 2010;74(1):108.

    Article  CAS  Google Scholar 

  20. Soya K, Mihara N, Kuchar D, Kubota M, Matsuda H, Fukuta T. Use of caffeine and human pharmaceutical compounds to identify sewage contamination. Int J Civil Environ Eng. 2008;2(8):93.

    Google Scholar 

  21. Havlík T, Srobian M, Kammel R, Curilla J, Cmorejova D. Refining of crude nickel sulphate obtained from copper electrolyte. Hydrometallurgy. 1996;41:79.

    Article  Google Scholar 

  22. Giannopoulou I, Panias D. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy. 2008;90(2–4):137.

    Article  CAS  Google Scholar 

  23. Bertuol DA, Bernardes AM, Tenório JAS. Spent NiMH batteries—the role of selective precipitation in the recovery of valuable metals. J Power Sources. 2009;193(2):914.

    Article  CAS  Google Scholar 

  24. Provazi K, Campos BA, Espinosa DCR, Tenório JAS. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques. Waste Manag. 2011;31(1):59.

    Article  CAS  Google Scholar 

  25. Parker SP. McGraw-Hill Encyclopedia of Chemistry. 2nd ed. NewYork: McGraw-Hill; 1993. 1154.

    Google Scholar 

  26. Sharifi B, Mojtahedi M, Goodarzi M, Vandati Khaki J. Effect of electrolysis conditions on current efficiency, morphology and specific surface of zinc powder. Hydrometallurgy. 2009;99(1–2):72.

    Article  CAS  Google Scholar 

  27. Zhang Y, Deng J, Chen J, Yu R, Xing X. The electrowinning of zinc from sodium hydroxide solutions. Hydrometallurgy. 2014;146:59.

    Article  CAS  Google Scholar 

  28. Monhemius A. Precipitation diagrams for metal-hydroxides, sulfides, arsenates and phosphates. Proc Trans Inst Min Metal Sect C Miner Proces Extract Metal. 1977;86:C202.

    Google Scholar 

  29. Jackson E. Hydrometallurgical Extraction and Reclamation. Chichester: Ellis Horwood; 1986. 59.

    Google Scholar 

  30. Puigdomenech I, Medusa H. Make Equilibrium Diagrams Using Sophisticated Algorithms. Stockholm: Royal Institute of Technology; 2010. 67.

    Google Scholar 

  31. Chi R, Tian J. Weathered Crust Elution-Deposited Rare Earth Ores. New York: Nova Science Publishers; 2008. 209.

    Google Scholar 

  32. Sahraei R, Darafarin S. An investigation on optical characteristics of nanocrystalline ZnS:Ni thin films prepared by chemical deposition method. Spectrochim Acta A. 2015;149:941.

    Article  CAS  Google Scholar 

  33. Olhero SM, Soma D, Amaral VS, Button TW, Alves FJ, Ferreira JMF. Co-precipitation of a Ni–Zn ferrite precursor powder: Effects of heat treatment conditions and deagglomeration on the structure and magnetic properties. J Eur Ceram Soc. 2012;32(10):2469.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Program from Sahand University of Technology, Tabriz, Iran (No. 13940501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghomi, M.A., Moghaddam, J. & Ahmadi, N.P. A new approach to zinc–nickel separation using solution alkalinization method: application to a zinc plant residue. Rare Met. 39, 1341–1347 (2020). https://doi.org/10.1007/s12598-015-0682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0682-3

Keywords

Navigation