Skip to main content
Log in

Selective Hydrochloric Acid Leaching of Zinc, Lead and Silver from Mechanically Activated Zinc Plant Residue

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A solid waste from zinc production, zinc plant residue (ZPR) is a valuable resource for the recovery of zinc (Zn), lead (Pb), and silver (Ag). However, the ferritic structure of ZPR makes it difficult to leach these metals. Here, in order to increase the reactivity of the ZPR, mechanical activation using a high-energy ball mill was used. The sample mechanically activated for 15 min was subjected to two-stage leaching with the hydrochloric acid (HCl) solution. At the 1st stage, 74% of Zn was recovered from mechanically activated ZPR sample into the solution under the following conditions: 1 M HCl, 120 min leaching duration, liquid-to-solid ratio (L : S) of 4, the temperature of 25°C, and a rotation speed of 600 rpm. At the 2nd stage, 56% of Pb and 53% of Ag were recovered from the leaching residue, under the following optimized conditions: 8 M HCl, 120 min leaching duration, liquid-to-solid ratio (L : S) of 20, the temperature of 25°C, and a rotation speed of 600 rpm. Сonceptual flow-diagram of the zinc, lead and silver selective recovery from ZPR is proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Ashtari, P. and Pourghahramani, P., Selective mechanochemical alkaline leaching of zinc from zinc plant residue, Hydrometallurgy, 2015, vol. 156, pp. 165–172. https://doi.org/10.1016/j.hydromet.2015.03.017

    Article  CAS  Google Scholar 

  2. Baláž, P., Boldižárová, E., Achimovičová, M., and Kammel, R., Leaching and dissolution of a pentlandite concentrate pretreated by mechanical activation. Hydrometallurgy, 2000, vol. 57, no. 1, pp. 85–96. https://doi.org/10.1016/S0304-386X(00)00102-X

    Article  Google Scholar 

  3. Baláž, P., Mechanical activation in hydrometallurgy, Int. J. Miner. Process., 2003, vol. 72, nos. 1–4, pp. 341–354. https://doi.org/10.1016/S0301-7516(03)00109-1

    Article  CAS  Google Scholar 

  4. Bobadilla-Fazzini, R.A., Pérez, A., Gautier, V., Jordan, H., and Parada, P., Primary copper sulfides bioleaching vs. chloride leaching: Advantages and drawbacks, Hydrometallurgy, 2017, vol. 168, pp. 26–31. https://doi.org/10.1016/j.hydromet.2016.08.008

    Article  CAS  Google Scholar 

  5. Erdemoğlu, M., Birinci, M., Uysal, T., Porgalı Tüzer, E., and Barry, T.S., Mechanical activation of pyrophyllite ore for aluminum extraction by acidic leaching, J. Mater. Sci., 2018, vol. 53, no. 19, pp. 13801–13812. https://doi.org/10.1007/s10853-018-2606-8

    Article  CAS  Google Scholar 

  6. Fattahi, A., Rashchi, F., and Abkhoshk, E., Reductive leaching of zinc, cobalt and manganese from zinc plant residue, Hydrometallurgy, 2016, vol. 161, pp. 185–192. https://doi.org/10.1016/j.hydromet.2016.02.003

    Article  CAS  Google Scholar 

  7. Gharabaghi, M., Irannajad, M., and Azadmehr, A.R., Acidic leaching of cadmium from zinc plant residue, Physicochem. Probl. Miner. Process., 2011, vol. 47, pp. 91–104.

    CAS  Google Scholar 

  8. Godočíková, E., Baláž, P., and Boldižárová, E., Structural and temperature sensitivity of the chloride leaching of copper, lead and zinc from a mechanically activated complex sulphide, Hydrometallurgy, 2002, vol. 65, no. 1, pp. 83–93. https://doi.org/10.1016/S0304-386X(02)00094-4

    Article  Google Scholar 

  9. Langová, Š., Leško, J., and Matýsek, D., Selective leaching of zinc from zinc ferrite with hydrochloric acid, Hydrometallurgy, 2009, vol. 95, nos. 3–4, pp. 179–182. https://doi.org/10.1016/j.hydromet.2008.05.040

    Article  CAS  Google Scholar 

  10. Leclerc, N., Meux, E., and Lecuire, J.M., Hydrometallurgical extraction of zinc from zinc ferrites, Hydrometallurgy, 2003, vol. 70, nos. 1–3, pp. 175–183. https://doi.org/10.1016/S0304-386X(03)00079-3

    Article  CAS  Google Scholar 

  11. Li, X.H., Zhang, Y.J., Pan, L.P., and Wei, Y.S., Effect of mechanical activation on dissolution kinetics of neutral leach residue of zinc calcine in sulphuric acid, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 5, pp. 1512–1519. https://doi.org/10.1016/S1003-6326(13)62624-2

    Article  CAS  Google Scholar 

  12. Li, J., Li, D., Xu, Z., Liao, C., Liu, Y., and Zhong, B., Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution, J. Cleaner Prod., 2018, vol. 179, pp. 24–30.

    Article  CAS  Google Scholar 

  13. Min, X.B., Xie, X.D., Chai, L.Y., Liang, Y.J., Mi, L.I., and Yong, K.E., Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no.1, pp. 208–218. https://doi.org/10.1016/S1003-6326(13)62448-6

    Article  CAS  Google Scholar 

  14. Mussapyrova, L., Nadirov, R., Baláž, P., Rajňák, M., Bureš, R., and Baláž, M., Selective room-temperature leaching of copper from mechanically activated copper smelter slag, J. Mater. Res. Technol., 2021, vol. 12, pp. 2011–2025. https://doi.org/10.1016/j.jmrt.2021.03.090

    Article  CAS  Google Scholar 

  15. Nadirov, R.K. and Mussapyrova, L.A., Copper smelter slag leaching by using H2SO4 in the presence of dichromate, J. Chem. Technol. Metall., 2019, vol. 54, no. 3, pp. 657–662.

    CAS  Google Scholar 

  16. Nguyen, T.H. and Lee, M.S., A review on the recovery of titanium dioxide from ilmenite ores by direct leaching technologies, Miner. Process. Extr. Metall. Rev., 2019, vol. 40, no. 4, pp. 231–247. https://doi.org/10.1080/08827508.2018.1502668

    Article  CAS  Google Scholar 

  17. Pourghahramani, P. and Forssberg, E., Effects of mechanical activation on the reduction behavior of hematite concentrate, Int. J. Miner. Process., 2007, vol. 82, no. 2, pp. 96–105. https://doi.org/10.1016/j.minpro.2006.11.003

    Article  CAS  Google Scholar 

  18. Sasikumar, C., Rao, D.S., Srikanth, S., Ravikumar, B., Mukhopadhyay, N.K., and Mehrotra, S.P., Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa, India, Hydrometallurgy, 2004, vol. 75, nos. 1–4, pp. 189–204. https://doi.org/10.1016/j.hydromet.2004.08.001

    Article  CAS  Google Scholar 

  19. Souza, A.D.D., Pina, P.D.S., Leão, V.A., Silva, C.A.D., and Siqueira, P.D.F., The leaching kinetics of a zinc sulphide concentrate in acid ferric sulphate, Hydrometallurgy, 2007a, vol. 89, nos. 1–2, pp. 72–81. https://doi.org/10.1016/j.hydromet.2007.05.008

    Article  CAS  Google Scholar 

  20. Souza, A.D.D., Pina, P.D.S., Lima, E.V.D.O., Da Silva, C.A., and Leão, V.A., Kinetics of sulphuric acid leaching of a zinc silicate calcine, Hydrometallurgy, 2007b, vol. 89, nos. 3–4, pp. 337–345. https://doi.org/10.1016/j.hydromet.2007.08.005

    Article  CAS  Google Scholar 

  21. Swarnkar, S.R., Gupta, B.L., and Sekharan, R.D., Iron control in zinc plant residue leach solution, Hydrometallurgy, 1996, vol. 42, no. 1, pp. 21–26. https://doi.org/10.1016/0304-386X(95)00077-T

    Article  CAS  Google Scholar 

  22. Tang, L., Tang, C., Xiao, J., Zeng, P., and Tang, M., A cleaner process for valuable metals recovery from hydrometallurgical zinc residue, J. Cleaner Prod., 2018, vol. 201, pp. 764–773. https://doi.org/10.1016/j.jclepro.2018.08.096

    Article  CAS  Google Scholar 

  23. Tang, A., Su, L., Li, C., and Wei, W., Effect of mechanical activation on acid-leaching of kaolin residue, Appl. Clay Sci., 2010, vol. 48, no. 3, pp. 296–299. https://doi.org/10.1016/j.clay.2010.01.019

    Article  CAS  Google Scholar 

  24. Tiechui, Y., Qinyuan, C., and Jie, L., Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite, Hydrometallurgy, 2010, vol. 104, no. 2, pp. 136–141. https://doi.org/10.1016/j.hydromet.2010.05.008

    Article  CAS  Google Scholar 

  25. Tkáčová, K., Baláž, P., Misura, B., Vigdergauz, V.E., and Chanturiya, V.A., Selective leaching of zinc from mechanically activated complex Cu-Pb-Zn concentrate, Hydrometallurgy, 1993, vol. 33, no. 3, pp. 291–300. https://doi.org/10.1016/0304-386X(93)90068-O

    Article  Google Scholar 

  26. Tkáčová, K., Šepelák, V., Števulová, N., and Boldyrev, V.V., Structure-reactivity study of mechanically activated zinc ferrite, J. Solid State Chem., 1996, vol. 123, no. 1, pp. 100–108. https://doi.org/10.1006/jssc.1996.0157

    Article  Google Scholar 

  27. Turan, M.D., Characterization and leaching of mechanically activated zinc residue, Chem. Pap., 2021, vol. 75, pp. 2881–2890. https://doi.org/10.1007/s11696-020-01491-w

    Article  CAS  Google Scholar 

  28. Turan, M.D. and Safarzadeh, M.S., Separation of zinc, cadmium and nickel from ZnO–CdO–NiO mixture through baking with ammonium chloride and leaching, Hydrometallurgy, 2012, vol. 119, pp. 1–7. https://doi.org/10.1016/j.hydromet.2012.03.006

    Article  CAS  Google Scholar 

  29. Vieceli, N., Nogueira, C.A., Pereira, M.F., Dias, A.P.S., Durão, F.O., Guimarães, C., and Margarido, F., Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 2017, vol. 102, pp. 1–14. https://doi.org/10.1016/j.mineng.2016.12.001

    Article  CAS  Google Scholar 

  30. Wang, Y. and Zhou, C., Hydrometallurgical process for recovery of cobalt from zinc plant residue, Hydrometallurgy, 2002, vol. 63, no. 3, pp. 225–234. https://doi.org/10.1016/S0304-386X(01)00213-4

    Article  CAS  Google Scholar 

  31. Xu, Y., Jiang, T., Wen, J., Gao, H., Wang, J., and Xue, X., Leaching kinetics of mechanically activated boron concentrate in a NaOH solution, Hydrometallurgy, 2018, vol. 179, pp. 60–72. https://doi.org/10.1016/j.hydromet.2018.05.026

    Article  CAS  Google Scholar 

  32. Yoo, K., Kim, S.K., Lee, J.C., Ito, M., Tsunekawa, M., and Hiroyoshi, N., Effect of chloride ions on leaching rate of chalcopyrite, Miner. Eng., 2010, vol. 23, no. 6, pp. 471–477. https://doi.org/10.1016/j.mineng.2009.11.007

    Article  CAS  Google Scholar 

  33. Youcai, Z. and Stanforth, R., Extraction of zinc from zinc ferrites by fusion with caustic soda, Miner. Eng., 2000, vol. 13, no. 13, pp. 1417–1421. https://doi.org/10.1016/S0892-6875(00)00123-0

    Article  CAS  Google Scholar 

  34. Thermal Constants of Substances, Yungman, V.S., Ed., John Wiley and Sons, 1999, vol. 3.

    Google Scholar 

  35. Zhang, Y., Li, X., Pan, L., Wei, Y., and Liang, X., Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite, Hydrometallurgy, 2010, vol. 102, nos. 1–4, pp. 95–100. https://doi.org/10.1016/j.hydromet.2010.02.003

    Article  CAS  Google Scholar 

  36. Zhang, Y., Yu, X., and Li, X., Kinetics of simultaneous leaching of Ag and Pb from hydrometallurgical zinc residues by chloride, Rare Met., 2012, vol. 31, no. 4, pp. 402–409. https://doi.org/10.1007/s12598-012-0528-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, no. 112M285). The author would like to thank TUBITAK for financial supporting. The financial support of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP08856414) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deniz Turan.

Ethics declarations

The corresponding author states that there is no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz Turan, M., Assemi, S., Nadirov, R.K. et al. Selective Hydrochloric Acid Leaching of Zinc, Lead and Silver from Mechanically Activated Zinc Plant Residue. Russ. J. Non-ferrous Metals 63, 490–499 (2022). https://doi.org/10.3103/S1067821222050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222050108

Keywords:

Navigation