Skip to main content
Log in

Synthesis of vanadium and chromium carbides (V8C7–Cr3C2) nanocomposite via an in situ precursor method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In situ synthesis method was used to prepare V8C7–Cr3C2 nanocomposite. Ammonium vanadate, ammonium dichromate and nanometer carbon black were used as raw materials. The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric and differential scanning calorimetry (TG-DSC) and X-ray photoelectron spectroscopy (XPS) techniques. The results show that V8C7–Cr3C2 nanocomposite with an average crystallite size of 25.4 nm can be synthesized at 1200 °C for 1 h. The synthesis temperature required by the method is at least 200 °C lower than that required by the conventional approaches for preparing vanadium and chromium carbides. The powders show good dispersion and are mainly composed of spherical or nearly spherical particles with a mean diameter of about 30 nm. The weight loss ratio of the precursor throughout the reaction process reaches 58 wt%. Three exothermic peaks and four endothermic peaks occur during the reaction. The surface of the specimen is mainly composed of V, Cr, C and O elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Takahashi J, Kawakamia K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scr Mater. 2012;67(2):213.

    Article  Google Scholar 

  2. Lei M, Zhao HZ, Yang H, Song B, Tang WH. Synthesis of transition metal carbide nanoparticles through melamine and metal oxides. J Eur Ceram Soc. 2008;28(8):1671.

    Article  Google Scholar 

  3. Didziulis SV, Butcher KD. A perspective on the properties and surface reactivities of carbides and nitrides of titanium and vanadium. Coordin Chem Rev. 2013;257(1):93.

    Article  Google Scholar 

  4. Wu X, Guo ZM, Wang HB, Song XY. Mechanical properties of WC–Co coatings with different decarburization levels. Rare Met. 2014;33(3):313.

    Article  Google Scholar 

  5. Sun ZM, Ahuja R, Lowther JE. Mechanical properties of vanadium carbide and a ternary vanadium tungsten carbide. Solid State Commun. 2010;150(16–17):697.

    Article  Google Scholar 

  6. Cintho OM, Favilla EAP, Capocchi JDT. Mechanical–thermal synthesis of chromium carbides. J Alloy Compd. 2007;439(1–2):189.

    Article  Google Scholar 

  7. Weidow J, Andrén HO. Grain and phase boundary segregation in WC–Co with small V, Cr or Mn additions. Acta Mater. 2010;58(11):3888.

    Article  Google Scholar 

  8. Liu Y, Wang XM, Cen S, Gou GQ, Wang LJ, Chen H, Tu MJ, Li YX. Corrosion behavior of thermal-sprayed WC cermet coatings in SO4 2− environment. Rare Met. 2014;33(3):318.

    Article  Google Scholar 

  9. Mahajan M, Singh K, Pandey OP. Single step synthesis of nano vanadium carbide-V8C7 phase. Int J Refract Met Hard Mater. 2013;36(1):106.

    Article  Google Scholar 

  10. Sun L, Yang TE, Jia CC, Xiong J. VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. Int J Refract Met Hard Mater. 2011;29(2):147.

    Article  Google Scholar 

  11. Lei CP, Wu AH, Tang JC, Ye N. Effects of morphology structure of tungsten nano-powders on properties of tungsten carbide powders. Chin J Rare Met. 2014;38(1):48.

    Google Scholar 

  12. Eriksson M, Radwan M, Shen ZJ. Spark plasma sintering of WC, cemented carbide and functional graded materials. Int J Refract Met Hard Mater. 2013;36(1):31.

    Article  Google Scholar 

  13. Ma JH, Wu MN, Du YH, Chen SQ, Ye J, Jin LL. Low temperature synthesis of vanadium carbide (VC). Mater Lett. 2009;63(11):905.

    Article  Google Scholar 

  14. Yazawa Y, Furuhara T, Maki T. Effect of matrix recrystallization on morphology, crystallography and coarsening behavior of vanadium carbide in austenite. Acta Mater. 2004;52(12):3727.

    Article  Google Scholar 

  15. Chen YJ, Zhang H, Ye HN, Ma JH. A simple and novel route to synthesize nano-vanadium carbide using magnesium powders, vanadium pentoxide and different carbon source. Int J Refract Met Hard Mater. 2011;29(4):528.

    Article  Google Scholar 

  16. Alar J, Thomas T, Enn L. Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide. Carbon. 2007;45(14):2717.

    Article  Google Scholar 

  17. Hirota K, Mitani K, Yishinaka M, Yamaguchi O. Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering. Mat Sci Eng A. 2005;399(1–2):154.

    Article  Google Scholar 

  18. Sharafi S, Gomari S. Effects of milling and subsequent consolidation treatment on the microstructural properties and hardness of the nanocrystalline chromium carbide powders. Int J Refract Met Hard Mater. 2012;30(1):57.

    Article  Google Scholar 

  19. Gomari S, Sharafi S. Microstructural characterization of nanocrystalline chromium carbides synthesized by high energy ball milling. J Alloy Compd. 2010;490(1–2):26.

    Article  Google Scholar 

  20. Zhang B, Li ZQ. Synthesis of vanadium carbide by mechanical alloying. J Alloy Compd. 2005;392(1–2):183.

    Article  Google Scholar 

  21. Kapoor R, Oyama ST. Synthesis of vanadium carbide by temperature programmed reaction. J Solid State Chem. 1995;120(2):320.

    Article  Google Scholar 

  22. Loubière S, Laurent C, Bonino JP, Rousset A. A metastable chromium carbide powder obtained by carburization of a metastable chromium oxide. J Alloy Compd. 1996;243(1–2):59.

    Article  Google Scholar 

  23. Xiang H, Xu YD, Zhang LT, Cheng LF. Synthesis and microstructure of tantalum carbide and carbon composite by liquid precursor route. Scripta Mater. 2006;55(4):339.

    Article  Google Scholar 

  24. Mondal S, Banthia AK. Low-temperature synthetic route for boron carbide. J Eur Ceram Soc. 2005;25(2–3):287.

    Article  Google Scholar 

  25. Matyi RJ, Schwartz LH, Butt JB. Particle size, particle size distribution and related measurements of supported metal catalysts. Catal Rev Sci Eng. 1987;29(1):41.

    Article  Google Scholar 

  26. Dai LY, Lin SF, Chen JF, Zeng MQ, Zhu M. A new method of synthesizing ultrafine vanadium carbide by dielectric barrier discharge plasma assisted milling. Int J Refract Met Hard Mater. 2012;30(1):48.

    Article  Google Scholar 

  27. Preiss H, Schultzeb D, Szulzewsky K. Carbothermal synthesis of vanadium and chromium carbides from solution-derived precursors. J Eur Ceram Soc. 1999;19(2):187.

    Article  Google Scholar 

  28. Lipatnikov VN, Lengauer W, Ettmayer P, Keil E, Groboth G, Kny E. Effects of vacancy ordering on structure and properties of vanadium carbide. J Alloy Compd. 1997;261(1–2):192.

    Article  Google Scholar 

  29. Lin N, He YH, Wu CH, Zhang QK, Zou J, Zhao ZW. Fabrication of tungsten carbide–vanadium carbide core–shell structure powders and their application as an inhibitor for the sintering of cemented carbides. Scripta Mater. 2012;67(10):826.

    Article  Google Scholar 

  30. Wang SC, Lin HT, Nayak PK, Chang SY, Huang JL. Carbothermal reduction process for synthesis of nanosized chromium carbide via metal-organic vapor deposition. Thin Solid Films. 2010;518(24):7360.

    Article  Google Scholar 

  31. Reza EK, Hossein MZ, Vahid N. Synthesis of chromium carbide by reduction of chromium oxide with methane. Int J Refract Met Hard Mater. 2010;28(3):412.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51304063), the Funding Scheme for Young Teachers of Higher School in Henan Province (No. 2013GGJS-076) and the Fundamental Research Funds for the Henan Provincial Colleges and Universities (No. 2014YWQQ19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZW., Hu, WM., Zheng, HJ. et al. Synthesis of vanadium and chromium carbides (V8C7–Cr3C2) nanocomposite via an in situ precursor method. Rare Met. 34, 498–504 (2015). https://doi.org/10.1007/s12598-015-0501-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0501-x

Keywords

Navigation